UNIVERSIDADE FEDERAL DE VIÇOSA
DEPARTAMENTO DE ENGENHARIA AGRÍCOLA
ÁREA DE CONSTRUÇÕES RURAIS E AMBIÊNCIA

RELATÓRIO TÉCNICO CIENTÍFICO
apresentado à FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) como parte das exigências ao financiamento de pesquisas.

CORREÇÃO DOS VALORES DOS ÍNDICES TÉRMICOS AMBIENTAIS (ITGU e CTR) CALCULADOS À PARTIR DE DADOS OBTIDOS COM GLOBO-TERMÔMETROS DE ALUMÍNIO, LATÃO, PLÁSTICO E COBRE.

<table>
<thead>
<tr>
<th>Processo:</th>
<th>CAG 1299/97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período de Execução:</td>
<td>18/12/1998 a 18/12/1999</td>
</tr>
<tr>
<td>Coordenador:</td>
<td>Profa. Cecília de Fátima Souza</td>
</tr>
</tbody>
</table>
| Equipe: | Ilda de Fátima Ferreira Tinóco
 | Fernando da Costa Baêta
 | Williams Pinto Marques Ferreira
 | Rogério Sabino da Silva |
| Área: | Construções Rurais e Ambiência do Curso de Engenharia Agrícola e Ambiental |
| Instituição: | Universidade Federal de Viçosa – Viçosa/MG |

VIÇOSA - MG
DEZEMBRO - 1999
CONTEÚDO

I. ABSTRACT/KEY-WORDS E RESUMO/PALAVRAS-CHAVE.......................... 1

II. CONSIDERAÇÕES INICIAIS... 2

III. ATIVIDADES DESENVOLVIDAS.. 2

 A. Atividades Relativas à Pesquisa ... 2

 a) Estudo preliminar da área experimental (dezembro/1998)................... 3

 b) Revisão de literatura/objetivos (dezembro/1998 – março/1999)............ 3

 c) Identificação dos tratamentos, montagem experimental e coleta de dados (dezembro/1998 – março/1999).. 8

 d) Cálculo dos índices térmicos e análise estatística (abril - agosto/1999) ... 9

 e) Análise e discussão dos resultados (setembro – novembro/1999)........ 10

 f) Elaboração das conclusões (dezembro/1999).. 11

 g) Preparo do artigo em formato para publicação (dezembro/1999)........ 13

 h) Referências bibliográficas.. 14

 B. Outras atividades relativas ao projeto.. 15

IV. CONSIDERAÇÕES FINAIS... 15

V. ANEXOS.. 15
I. ABSTRACT/KEY-WORDS E RESUMO/PALAVRAS-CHAVE

ABSTRACT: To determine the environment confort level depends on measurement of the solar radiation component. In this way the black-globe-thermometer is very used. This apparatus consists of a cooper empty ball covered with black ink at the external boundary, in center of which is installed the temperature sensor, a thermometer or a termocouple. Its cost is very high. So it is proposed in this research to avaluate other equipment like this but not too expensive. The analysis showed that plastic globe was satisfactory option.

KEY-WORDS: bioclimatology; globe-thermometer; radiation; thermal index.

RESUMO: A radiação é um componente significativo do ambiente térmico, exercendo influência acentuada no processo de transferência de calor ambiente. A avaliação completa do conforto animal depende, em grande parte da quantificação desse fator. Para medir as grandezas envolvidas nessa quantificação, vários instrumentos específicos são utilizados, dentre os quais se destaca o termômetro de globo negro, que constitui forma prática e eficiente de isolar a temperatura radiante média de outros fatores do ambiente térmico. O termômetro de globo negro padrão consiste de uma esfera oca de cobre, com diâmetro 0,15 m e espessura 0,5 mm, pintada externamente com tinta preta fosca, no interior da qual é adaptado um elemento sensor de temperatura (termopar ou termômetro simples). A temperatura de globo negro, medida por meio deste instrumento, representa, num único valor, os efeitos combinados da energia radiante, temperatura do ar e velocidade do ar, a partir do qual pode-se concluir sobre o nível de conforto de um dado ambiente. Desde o início de sua utilização até o presente, o termômetro de globo negro tem sofrido variações no que diz respeito a forma, tamanho e material de confecção em virtude, principalmente, do preço do globo de cobre utilizado no instrumento padrão. Dessa forma, o estudo presente teve como objetivo avaliar as características físicas do termômetro de globo, tais como o diâmetro do globo e o material utilizado na sua confecção, sendo analisados o cobre, o alumínio, o latão e o plástico. Buscou-se ainda verificar as implicações das variações dessas características sobre o resultado final, ou seja, a temperatura de globo negro, em comparação com o do instrumento padrão, visando obter parâmetros que permitissem a indicação, para o agricultor, de um material mais barato do que o cobre, que pudesse ser utilizado com o mesmo nível de eficiência. Além de apresentar preço mais acessível com relação ao de cobre, o globo de plástico mostrou correlação satisfatória com o de cobre, com base no Índice de Temperatura de Globo e Umidade e na Carga Térmica de Radiação, índices de conforto térmico usados como parâmetros comparativos.

PALAVRAS-CHAVE: bioclimatologia; globo-termômetro; radiação; índice térmico.
RELATÓRIO TÉCNICO CIENTÍFICO

CORREÇÃO DOS VALORES DOS ÍNDICES TÉRMICOS AMBIENTAIS (ITGU e CTR) CALCULADOS À PARTIR DE DADOS OBTIDOS COM GLOBO-TERMÔMETROS DE ALUMÍNIO, LATÃO, PLÁSTICO E COBRE.

II. CONSIDERAÇÕES INICIAIS

Estamos apresentando à FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) o relatório técnico científico da pesquisa cadastrada sob o nº CAG 1299/97, executada no período de 12 de dezembro de 1998 a 18 de dezembro de 1999, no qual são apresentados os roteiros das atividades e resultados obtidos, bem como outras atividades relacionadas.

III. ATIVIDADES DESENVOLVIDAS

A. Atividades Relativas à Pesquisa

Conforme cronograma proposto no projeto inicial, as atividades relativas à Pesquisa seguiram o seguinte roteiro:
a) Estudo preliminar da área experimental (dezembro/ 1998)

Durante esse período foi feito um estudo preliminar objetivando definir a área de instalação do experimento, tendo em vista que a interferência de obstáculos externos (construções, vegetação etc) sobre a incidência de radiação solar nos globo-termômetros deveria ser a mínima possível. Em seguida, de posse do mapa da área, foi feito um sorteio da distribuição na mesma dos tratamentos (diferentes tipos de globo-termômetros) e respectivas repetições (duas de cada).

Nesse mesmo período foram adquiridos os globos, os instrumentos meteorológicos e demais materiais (barras de aço, tinta, pregos, arame etc.) que seriam utilizados no experimento. À seguir, os globos foram pintados com tinta preta fosca, os suportes foram pintados de branco e preparados para receber os globos que tiveram os termômetros inseridos com o elemento sensor em seus centros.

Seguiu-se a distribuição na área experimental dos instrumentos preparados, de acordo com o sorteio feito no mapa, conforme citado anteriormente, ficando de acordo com o que é mostrado nas Figuras 1 e 2.

Em paralelo à coleta de dados, o grupo trabalhou na elaboração da revisão de literatura sobre a utilização do globo-termômetro nas pesquisas da área de ambigência vegetal e mais especificamente animal, que após revista e corrigida apresentou a seguinte forma:
Atualmente, vários pesquisadores têm usado esferas metálicas pintadas de preto, como receptores para quantificação da carga radiante incidente sobre animais e plantas, em estudos referentes ao nível de conforto térmico, sob as mais diversas situações ambientais, embora o início da utilização deste instrumento date dos anos 30.

BEDFORD & WARNER, por exemplo, usaram termômetros de globo negro em estudos sobre aquecimento e ventilação em habitações, no ano de 1934.

Potter e Baker, citados por BOND & KELLY (1955), fizeram um estudo em 1948 sobre aquecimento e resfriamento de ambientes, do qual concluíram que a pele do ser humano sente a ação dos fatores ambientais da mesma forma que um globo metálico de seis polegadas de diâmetro, pintado externamente de preto, considerando-se proporções similares entre área da superfície corporal e volume corporal.

BOND & KELLY (1955) conduziram experimento na Califórnia com objetivo de determinar a carga de radiação sob dois tipos idênticos de cobertura, utilizando em uma o globo negro e na outra, um radiômetro, ambos a 1,50 m acima do solo. Concluíram que o globo negro foi tão preciso quanto o radiômetro.

O globo negro é um meio prático de se quantificar os componentes da energia radiante do ambiente, a partir da chamada temperatura de globo negro. A temperatura de globo negro é obtida pelo termômetro de globo negro, instrumento de fácil confecção, que consiste em uma esfera oca, de cobre, com aproximadamente 0,15 m de diâmetro e 0,5 mm de espessura, pintada externamente com duas camadas de tinta preta fosca para maximizar a absorção de radiação solar; em seu interior é instalado um termopar ou termômetro, para a leitura da temperatura (CAMPOS, 1986).

O termômetro de globo negro indica, por meio do valor lido de temperatura, os efeitos combinados da energia radiante, temperatura e velocidade do ar, três importantes fatores que afetam o conforto térmico. Constitui meio prático e barato de separar e determinar quantitativamente o componente energia radiante do ambiente, de uso já consolidado nas pesquisas atuais (BOND & KELLY, 1955).
Estudos referentes à obtenção de parâmetros de conforto térmico ambiental para animais foram iniciados nos anos 60. As primeiras pesquisas foram conduzidas com bovinos e suínos e desde então, considerou-se que, para estudos do ambiente animal, o termômetro de globo negro deveria ser instalado à altura aproximada do centro de massa do animal considerado.

KUEHN et alii (1970) estudaram a teoria do globo negro, isto é, a troca de calor na superfície de um globo-termômetro em equilíbrio com seu ambiente. Derivaram uma fórmula para relacionar o diâmetro e a emissividade de um globo com a troca de calor de uma espécie específica de animal com seu ambiente, considerando-a análoga ao globo.

Assim, estudos referentes às trocas térmicas animal-ambiente e, portanto, ao conforto térmico, envolvem, em sua maioria, medidas da temperatura de globo negro e determinações consequentes de índices que expressem o grau de conforto.

Os índices de conforto térmico mais comumente utilizados são o Índice de Temperatura de Globo e Umidade (ITGU) e a Carga Térmica Radiante (CTR) (SOUZA, 1992).

BUFFINGTON et alii (1977) afirmam que o índice mais preciso para se medir o conforto térmico para animais é o ITGU, calculado à partir da temperatura de globo negro. O valor absoluto do ITGU engloba os efeitos da temperatura de bulbo seco, da velocidade do ar, da umidade e da radiação.
De acordo com CAMPOS (1986), o ITGU pode ser calculado pela equação:

\[\text{ITGU} = tgn + 0,36 \ tpo - 330,08 \]

(eq. 01)

em que \(\text{ITGU} \) = Índice de Temperatura de Globo e Umididade;
\(tgn \) = Temperatura de globo negro, K; e
\(tpo \) = Temperatura do ponto de orvalho, K.

Atualmente, existem limites de ITGU definidos para diversas espécies de animais, especialmente os de interesse zootécnico, mas, já em 1976, o National Weather Service - USA, concluiu, após treze anos de estudo, que valores de ITGU até 74 definem situação de conforto para bovinos; de 74 a 78, situação de alerta; de 79 a 84, situação perigosa, e acima de 84, emergência (BAETTA, 1985).

Apesar da eficiência do ITGU na caracterização do ambiente térmico, Esmay, citado por CAMPOS (1986), pesquisou outro indicador de conforto térmico denominado Carga Térmica de Radiação (CTR), com base no fato de que a radiação constitui um dos mais importantes fatores térmicos na definição do bem-estar do animal.

De acordo com BOND & KELLY (1955), a CTR quantifica a radiação total recebida pelo animal de todo o espaço circundante, podendo também ser calculada à partir da leitura de temperatura de globo negro.

Como indicado por CAMPOS (1986), a CTR pode ser calculada pela equação de Stefan-Boltzmann:

\[\text{CTR} = \alpha \ • \ (\text{TRM})^4 \]

(eq. 02)

em que \(\text{CTR} \) = Carga Térmica de Radiação, W.m\(^{-2}\);
\(\alpha \) = Constante de Stefan Boltzmann, \(5,67 \times 10^{-8} \) W.m\(^{-2}\).K\(^{-4}\), e
\(\text{TRM} \) = Temperatura Radiante Média, K.
A temperatura Radiante Média (TRM) é a temperatura ambiente de uma circunvizinhança, considerada uniformemente negra para eliminar o efeito de reflexão, com a qual o corpo (globo negro) troca tanta quantidade de energia quanto a do ambiente atual considerado (BOND et alli, 1954; BOND & KELLY, 1955; CAMPOS, 1986). A TRM pode ser determinada pela seguinte equação:

\[
TRM = 100 \left[2.51 \sqrt{v} \ (tgn - tbs) + (tgn/100)^4 \right]^{1/4}
\]

(eq. 03)

em que

- TRM = Temperatura Radiante Média, K;
- \(v\) = Velocidade do vento, m.s\(^{-1}\);
- tbs = Temperatura de bulbo seco (do ar), K.

Com base no que foi exposto, tendo em vista a utilização em grande escala do termômetro de globo negro nos experimentos de ambiência, faz-se necessário o empenho de pesquisadores que, com base em resultados de pesquisas bem elaboradas e conduzidas, sejam capazes de indicar alternativas para substituição do material padrão (cobre) utilizado na confecção do equipamento, parâmetro que altera de maneira significativa o custo total de montagem experimental.

Desta forma, o presente trabalho teve como objetivos fazer uma análise comparativa de valores de ITGU e CTR, calculados à partir de dados de temperatura de globo negro, obtidas de globo-termômetros de alumínio, latão e plástico, com relação aos obtidos com o globo-termômetro de cobre, considerado padrão, buscando definir correções nos valores e indicar materiais alternativos para confecção do instrumento.
c) Identificação dos tratamentos, montagem experimental e coleta de dados (dezembro/1998 – março/1999)

O experimento foi conduzido nas dependências da Área Experimental de Construções Rurais e Ambiência do Departamento de Engenharia Agrícola da Universidade Federal de Viçosa, em Viçosa - M.G.

A cidade é localizada na latitude de 20° 45´ 45” Sul e longitude 42° 52´ 04” Oeste, com altitude de 657 m. O clima da região, de acordo com a classificação de Köppen, é Cwa (quente, temperado, chuvoso, com estação seca no inverno e verão quente). Segundo a classificação de Thornthwaite, é B\textsubscript{2}r B3 a’ (umido, com pequena ou nenhuma deficiência de água, mesotérmico).

Os períodos considerados para a coleta de dados foram: 18 de dezembro de 1998; 06, 09 e 16 de janeiro de 1999; 18, 20, 29, 30 e 31 de março de 1999.

Foram utilizadas duas unidades (repetições) de cada um dos seguintes tipos de globo-termômetros (tratamentos): 1- de plástico, oco, com 11,5 cm de diâmetro e espessura 0,0005 m (P. pequeno); 2- de plástico, oco, com 15 cm de diâmetro e espessura 0,0005 m (P. grande); 3- de plástico, oco, com 3,6 cm de diâmetro e espessura 0,0005 m (ping-pong); 4- de alumínio, oco, com 13 cm de diâmetro e espessura 0,0005 m; 5- de cobre, oco, com 13,5 cm de diâmetro e espessura 0,0005 m (testemunha); 6- de latão, oco, com 9 cm de diâmetro e espessura 0,005 m.

Os globo-termômetros, devidamente preparados, foram instalados na área experimental, em posições aleatórias, na altura de 0,75 m, a qual corresponde a altura média da maioria dos animais domésticos produtivos.

Os dados coletados foram: temperatura do ar, temperatura de globo negro, temperatura de bulbo seco, temperatura de bulbo úmido e velocidade do ar. Tais coletas foram feitas no período de 06 às 18 horas, a cada duas horas nos dias mencionados.
d) Cálculo dos índices térmicos e análise estatística (abril - agosto/1999)

À partir dos dados coletados, utilizando o aplicativo CITER, desenvolvido por SOUZA et alii (1998) e, com base nas equações 1, 2 e 3, a equipe trabalhou no cálculo do Índice de Temperatura de Globo e Umidade (ITGU) e da Carga Térmica de Radiação (CTR) para todos os horários de todos os dias do período considerado.

A análise estatística foi feita a partir dos resultados médios horários do Índice de Temperatura de Globo e Umidade (ITGU) e da Carga Térmica Radiante (CTR), calculados por meio das equações 1 e 2, para cada um dos tratamentos. Os resultados são mostrados nos Quadros 1 e 2.

QUADRO 1 - Valores médios horários de ITGU obtidos a partir da tgn lida em 6 tipos diferentes de globo-termômetro (tratamentos), cada um com repetições de leituras em 7 horários diferentes.

<table>
<thead>
<tr>
<th>TRATAMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horários</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>
QUADRO 2 - Valores médios horários de CTR (W.m\(^2\)) obtidos a partir da tgn lida em 6 tipos diferentes de globo-termômetro (tratamentos), cada um com repetições de leituras em 7 horários diferentes.

<table>
<thead>
<tr>
<th>(i) TRATAMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

Compreendeu basicamente a determinação da equação de regressão para definição de fatores de correção dos valores de ITGU e CTR para cada um dos tratamentos, com relação ao testemunha.

Foram também traçados resultados gráficos, utilizados como suporte na elaboração das conclusões.

e) Análise e discussão dos resultados (setembro – novembro/1999)

A análise dos resultados compreendeu uma etapa de trabalho computacional acompanhada por toda a equipe e culminou no seguinte:

Os Quadros 3 e 4 apresentam as equações de regressão do ITGU e da CTR para todos os tratamentos estudados.
QUADRO 3 - Equações de regressão para valores médios do Índice de Temperatura de Globo e Umidade (ITGU), determinados a partir dos valores da tgn, obtida com os diferentes globo-termômetros utilizados no experimento, com relação ao globo de cobre.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Equações</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumínio</td>
<td>Y = 9,24992 + 0,89570*X</td>
<td>0,97808</td>
</tr>
<tr>
<td>Latão</td>
<td>Y = 16,8661 + 0,82503*X</td>
<td>0,98356</td>
</tr>
<tr>
<td>Plástico Grande</td>
<td>Y = -1,73187 + 1,0248*X</td>
<td>0,99889</td>
</tr>
<tr>
<td>Ping Pong</td>
<td>Y = 12,9651 + 0,80531*X</td>
<td>0,99644</td>
</tr>
<tr>
<td>Plástico Pequeno</td>
<td>Y = 1,60198 + 0,97529*X</td>
<td>0,99826</td>
</tr>
</tbody>
</table>

QUADRO 4 - Equações de regressão para valores médios de Carga Térmica de Radiação (CTR), determinados a partir dos valores da tgn, obtida para os globo-termômetros utilizados no experimento, com relação ao globo de cobre.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Equações</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumínio</td>
<td>Y = 27,7645 + 0,96137*X</td>
<td>0,98508</td>
</tr>
<tr>
<td>Latão</td>
<td>Y = 30,3294 + 0,96131*X</td>
<td>0,94490</td>
</tr>
<tr>
<td>Plástico Grande</td>
<td>Y = -27,1443 + 1,05534*X</td>
<td>0,99739</td>
</tr>
<tr>
<td>Ping Pong</td>
<td>Y = 135,938 + 0,66462*X</td>
<td>0,98893</td>
</tr>
<tr>
<td>Plástico Pequeno</td>
<td>Y = 12,5458 + 0,96106*X</td>
<td>0,99543</td>
</tr>
</tbody>
</table>

f) Elaboração das conclusões (dezembro/1999)

A Figura 3, elaborada a partir das equações apresentadas no Quadro 3, apresenta os gráficos do ITGU, para os globo-termômetros que apresentaram maior e menor correlação, respectivamente, com o de cobre.
Figura 3 – Gráfico de correlação do ITGU para os globos de plástico grande e de alumínio comparados com o de cobre.

A Figura 4, elaborada à partir das equações apresentadas no Quadro 4, apresenta os gráficos da CTR, para os globo-termômetros que apresentaram maior e menor correlação, respectivamente, com o de cobre.

Figura 4 – Gráfico de correlação da CTR para os globos de plástico grande e de latão comparados com o de cobre.
Analisando-se os resultados apresentados, observa-se que o melhor desempenho foi do globo de plástico grande, que apresentou o maior coeficiente de correlação, tanto para o ITGU, quanto para a CTR, com R² igual a 0,99889 e 0,99739, respectivamente. Observa-se, da mesma forma, que os globos de plástico pequeno e de ping-pong também foram eficientes, o que indica que esses materiais apresentam características físicas semelhantes às do globo testemunha, com relação à absorção da radiação solar. Observa-se, ainda, que o globo de latão apresentou os menores valores de R² para os dois índices considerados. Além disso, este último representa uma alternativa mais cara, comparada aos globos de plástico.

Para as condições em que o trabalho foi conduzido e pelos resultados obtidos, concluiu-se que:

a) Os globos de Plástico Grande e Plástico pequeno representam as melhores opções em substituição ao de cobre, na confecção do termômetro de globo negro, utilizado em grande escala na montagem de experimentos da área de Ambiência Animal e Vegetal.

b) Os globos de ping-pong, apesar de terem apresentado bons coeficientes de correlação, constituem alternativa cujo custo é mais elevado quando comparado ao dos de plástico, anteriormente citados, por se tratar de material oficial de esporte, o que não descarta a possibilidade de uso, tendo em vista seu desempenho na absorção da radiação solar.

c) Os globos de alumínio e latão representam as opções cujo custo é mais elevado, quando comparado ao dos anteriores, podendo ser utilizados em último caso, pois os resultados analisados também foram satisfatórios.

g) Preparo do artigo em formato para publicação (dezembro/1999)

Toda a equipe trabalhou no preparo e revisão do artigo em formato adequado para publicação.
h) Referências bibliográficas

BAÊTA, F.C. Responses of lactating dairy cows to the combined effects of
temperature, humidity and wind velocity in the warm season. Columbia,

BEDFORD, T.; WARNER, C. The globe thermometer in studies of heating and
ventilation. J. Hyg., v. 34, p. 458-73, 1934.

BOND, T.E.; KELLY, C.F. The globe thermometer in agricultural research. Agric.

THATCHER, W.W.; COLLIER, R.J. Black globe humidity index as a comfort

CAMPOS, A.T. Determinação dos índices de conforto térmico e da carga
térmica de radiação em quatro tipos de galpões, em condições de verão
(Tese - Mestrado em Engenharia Agrícola).

PEREIRA, N., BOND, T.E. MORRISON, S.R. “Ping-pong” ball into black-globe
1967.

SOUZA, C.F. Eficiência de diferentes tipos de bezerreiros, quanto ao
conforto térmico, na primavera e no verão em Viçosa - M.G. Viçosa, M.G.,
Universidade Federal de Viçosa, 1992. 94p. (Tese - Mestrado em Engenharia
Agrícola).

SOUZA, C.F. et al. CITER - aplicativo para cálculo dos índices de ambiente
térmico. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 27,
B. Outras atividades relativas ao projeto

As fases de montagem e coleta de dados foram utilizadas em aulas práticas dos cursos de graduação em zootecnia, agronomia e agrimensura da Universidade Federal de Viçosa, em cujos programas constam disciplinas da área de Construções Rurais e Ambiência.

IV. CONSIDERAÇÕES FINAIS

A pesquisa foi desenvolvida de acordo com o que foi programado e os resultados foram bastante satisfatórios, permitindo difusão da tecnologia com relativa facilidade e emprego dos instrumentos analisados até por leigos.

No momento, o artigo preparado está por ser submetido à publicação e espera-se que os resultados sejam bastante divulgados e aplicados.

A equipe está aberta à recepção de sugestões que venham a enriquecer a pesquisa.

V. ANEXOS

FIGURA 1 – Distribuição dos globos na área experimental

FIGURA 2 – Detalhe dos globo-termômetros

(Arquivos em separado)
FIGURA 1 – Distribuição dos globos na área experimental.

FIGURA 2 – Detalhe dos globo-termômetros.