MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO
UNIVERSIDADE FEDERAL DE LAVRAS
DEPARTAMENTO DE FITOPATOLOGIA

Projeto: ESTUDOS DO EFEITO DE ÓLEOS ESSENCIAIS E HISTOPATOLÓGICOS NAS
INTERAÇÕES *Hemileia vastatrix* e *Cercospora coffeicola* - CAFEEIRO

Relatório Final

Nº do processo: CAG 1832/06 – FAPEMIG
Coordenador do projeto: Eduardo Alves
Período de execução: 01/2007 a 02/2009

Equipe do Projeto

Prof. Dr. Eduardo Alves (DFP - UFLA)
Prof. Dr. Edson Ampélio Pozza (DFP - UFLA)
Prof. Dr. Mário Lúcio Vilela de Resende (DFP - UFLA)
Dr. Ricardo Borges Pereira (DFP - UFLA)

Lavras - MG
Fevereiro – 2008
SUMÁRIO

1. INTRODUÇÃO ... 1

2. OBJETIVOS ... 2

3. MATERIAL E MÉTODOS .. 2

3.1 Local de realização dos trabalhos .. 2

3.2 Obtenção do inóculo de *Hemileia vastatrix* .. 2

3.3 Obtenção do inóculo de *Cercospora coffeicola* ... 2

3.4 Preparo e condução das mudas de cafeeiro ... 3

3.5 Obtenção dos óleos essenciais ... 3

3.6 Realização dos experimentos .. 3

3.6.1 Experimento 1: Avaliação da toxidez dos óleos essenciais na germinação de urediniósporos de *Hemileia vastatrix* .. 3

3.6.2 Experimento 2: Óleos essenciais no controle da ferrugem do cafeeiro em casa de vegetação .. 4

3.6.3 Experimento 3: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeeiro contra *Hemileia vastatrix* .. 5

3.6.4 Experimento 4: Avaliação da toxidez dos óleos essenciais na germinação de conídios e no crescimento micelial de *Cercospora coffeicola* .. 5

3.6.5 Experimento 5: Óleos essenciais no controle da cercosporiose do cafeeiro em casa de vegetação .. 6

3.6.6 Experimento 6: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeeiro contra *Cercospora coffeicola* .. 7

3.6.7 Experimento 7: Estudo da germinação e do desenvolvimento micelial *in vivo* de conídios de *Cercospora coffeicola* ... 7

3.6.7.1 Instalação do experimento e inoculação ... 7

3.6.7.2 Coleta das amostras para microscopia ... 8

3.6.7.3 Preparo das amostras para microscopia eletrônica de varredura 8

3.7 Análises estatísticas ... 9

4. RESULTADOS E DISCUSSÃO .. 9

4.1 Experimento 1: Avaliação da toxidez dos óleos essenciais na germinação de urediniósporos de *Hemileia vastatrix* .. 9

4.2 Experimento 2: Óleos essenciais no controle da ferrugem do cafeeiro em casa de vegetação .. 11

4.3 Experimento 3: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeeiro contra *Hemileia vastatrix* .. 16

4.4 Experimento 4: Avaliação da toxidez dos óleos essenciais na germinação de conídios e no crescimento micelial de *Cercospora coffeicola* .. 20
4.5 Experimento 5: Óleos essenciais no controle da cercosporiose do cafeeiro em casa de vegetação ... 23

4.6 Experimento 6: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeeiro contra Cercospora coffeicola ... 27

4.7 Experimento 7: Estudo da germinação e do desenvolvimento micelial in vivo de conídios de Cercospora coffeicola ... 30

5 CONCLUSÕES .. 35

6 JUSTIFICATIVAS DO PROJETO .. 35

7 REFERÊNCIAS BIBLIOGRÁFICAS .. 36
1. INTRODUÇÃO

O café (Coffea arabica L.) é uma das importantes fontes de divisas para o Brasil, o qual se destaca como o principal produtor e exportador mundial de café, com a produção de 45,85 milhões de sacas de 60 quilos beneficiados, na safra de 2008. As regiões Sul e Oeste Mineiro contribuem com pouco mais de 50% deste total, ou seja, 23,3 milhões de sacas (Companhia Nacional de Abastecimento, Conab, 2008).

Devido ao aumento na demanda pelo café, principalmente nos países de clima frio, seu cultivo vem se mostrando sempre crescente. No entanto, o café é acometido por diversas doenças, como a ferrugem, causada por Hemileia vastatrix Berk. & Br e a cercosporiose, causada por Cercospora coffeicola Berk & Cooke (Zambolin et al., 2005). No Brasil estima-se que as perdas em decorrência apenas da ferrugem do café sejam da ordem de 30% da produção, principalmente pela ausência de medidas de controle e pela predominância de cafeeiros C. arabica suscetíveis à maioria das raças de H. vastatrix, incluindo a raça II, predominante no país. Os danos causados pela ferrugem são principalmente indiretos, pela indução da desfolha intensificada pela colheita. A queda precoce das folhas resulta no menor vingamento da florada, menor vingamento dos chumbinhos e também na seca dos ramos plagiotrópicos, comprometendo a produção do cafeteiro. Essa seca constante dos ramos reduz à longevidade dos cafeeiros, tornando a lavoura gradativamente antieconômica (Pereira, 2003; Pozza, 2008).

Outra doença de grande importância no cafeeiro é a cercosporiose, capaz de promover intensa desfolha da planta e, em consequência, reduzir a produção, além de prejuízos como a depreciação da qualidade da bebida dos grãos. Em condições de viveiro, a cercosporiose causa intensa desfolha, provocando atraso no desenvolvimento e no raquitismo das mudas. Ataques intensos da doença no campo ocorrem, principalmente, em regiões mais altas, chegando a causar perdas de até 30% na produção (Zambolin et al., 2005). Os prejuízos com a cercosporiose ganharam maior importância econômica com a implantação de lavouras nos cerrados, que apresentam solos com baixa fertilidade natural, ou em lavouras mal manejadas nutricionalmente (Pozza et al., 2008).

O controle destas doenças tem sido realizado de forma convencional com a aplicação de fungicidas cúpricos e sistêmicos (Zambolin et al., 2005). O uso racional destes produtos tem efeito benéfico para os produtores em curto prazo, no entanto, em longo prazo pode ocorrer a seleção de novas raças resistentes dos patógenos, além de promover a contaminação do ambiente e à saúde humana. Para contornar esse problema vários estudos estão sendo realizados visando desenvolver e descobrir métodos alternativos de controle de doenças de plantas.

Pesquisas em torno do potencial dos óleos essenciais no controle de doenças de plantas têm sido estimuladas nos últimos anos, uma vez que estes, além de apresentarem propriedades antimicrobianas (Schwan-Strada & Stangarlin, 2005), têm se mostrado promissores no controle alternativo de doenças de plantas (Guiraldó et al., 2004).
2. OBJETIVOS

Avaliar in vitro o efeito de diferentes óleos essenciais na germinação de urediníosporos de *Hemileia vastatrix* e na germinação de conídios de *Cercospora coffeicola*.

Avaliar in vitro o efeito de diferentes óleos essenciais no crescimento micelial de *Cercospora coffeicola*.

Avaliar o potencial dos óleos essenciais no controle da ferrugem e da cercosporiose em cultivares de cafeeiro em casa de vegetação.

Avaliar o efeito sistêmico dos óleos essenciais mais promissores no controle da ferrugem e da cercosporiose em cultivares de cafeeiro em casa de vegetação.

Avaliar in vivo dos óleos essenciais mais promissores sobre a germinação e o desenvolvimento micelial de conídios de *C. coffeicola*, por meio da microscopia eletrônica de varredura (MEV).

3. MATERIAL E MÉTODOS

3.1 Local de realização dos trabalhos

Os experimentos deste trabalho foram realizados no Laboratório de Microscopia Eletrônica e Análise Ultra-Estrutural (LME), em casa de vegetação, do Departamento de Fitopatologia (DFP) da Universidade Federal de Lavras (UFLA), na cidade de Lavras, MG, situada a 960 m de altitude, 44,97° de longitude Oeste e 21,22° de latitude Sul, no período de janeiro de 2007 a dezembro de 2008.

3.2 Obtenção do inóculo de *Hemileia vastatrix*

Folhas naturalmente infectadas foram coletadas em lavruras cafeeiras da região de Lavras, MG. Em seguida, os urediníosporos foram retirados das folhas mediante raspagem, utilizando-se um pincel de cerdas macias e acondicionados em microtubos de 2 mL, por um período máximo de 48 horas, até a sua utilização.

Para a inoculação, foi preparada uma suspensão de urediníosporos de *H. vastatrix*, na concentração de 0,5 g de urediníosporos L⁻¹ de água destilada, contendo tween 80 (0,05%). Concentração esta utilizada em todos os experimentos.

3.3 Obtenção do inóculo de *Cercospora coffeicola*

Para a obtenção do inóculo de *C. coffeicola*, folhas naturalmente infectadas no campo, na região de Lavras, MG, foram coletadas e lavadas superficialmente em água corrente. Após o enxugamento das folhas com papel toalha, estas foram submetidas a uma câmera úmida por três dias. Em seguida, realizou-se a raspagem dos conídios produzidos em ambas as faces das folhas, utilizando-se um pincel de cerdas macias umedecidas em água destilada. A suspensão obtida foi filtrada em gaze
e ajustada em hemocitômetro para a concentração de 1.5×10^4 conídios mL$^{-1}$, concentração esta utilizada em todos os experimentos.

3.4 Preparo e condução das mudas de cafeeiro

Em todos os experimentos descritos a seguir foram utilizadas mudas de cafeeiro das cultivares Mundo Novo 379/19 e Catuai IAC 62 como materiais suscetíveis a *C. coffelicola* e *H. vastatrix*, e Catuai 2SL como material parcialmente resistente a *H. vastatrix*.

As mudas foram adquiridas na Estação Experimental da Epamig, Centro de Pesquisa do Sul de Minas, Lavras, MG, com seis meses de idade. Em seguida, foram transplantadas para vasos de 7 L, contendo substrato composto de terra, esterco bovino e areia, na proporção 2:1:1. As plantas foram mantidas em casa de vegetação durante todo o período experimental, onde foram irrigadas periodicamente e adubadas conforme a recomendação (Ribeiro et al., 1999).

3.5 Obtenção dos óleos essenciais

Os óleos essenciais utilizados foram adquiridos da Brasil Portrait (2008), e encontra-se descritos na tabela 1.

<table>
<thead>
<tr>
<th>TABELA 1: Nome comum e científico das plantas utilizadas como fontes de extração dos óleos essenciais.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome comum</td>
</tr>
<tr>
<td>Árvore-de-chá</td>
</tr>
<tr>
<td>Canela</td>
</tr>
<tr>
<td>Capim-limão</td>
</tr>
<tr>
<td>Citronela</td>
</tr>
<tr>
<td>Cravo-da-india</td>
</tr>
<tr>
<td>Eucalipto</td>
</tr>
<tr>
<td>Npin</td>
</tr>
<tr>
<td>Tomilho</td>
</tr>
</tbody>
</table>

3.6 Realização dos experimentos

3.6.1 Experimento 1: Avaliação da toxidez dos óleos essenciais na germinação de urediniósporos de *Hemileia vastatrix*

Para a avaliação da toxidez dos óleos essenciais na germinação de *H. vastatrix*, foram testados os óleos de tomilho, cravo-da-india, eucalipto, canela, citronela, árvore-de-chá, nim e capim-limão, nas concentrações de 0, 250, 500, 1.000, 1.500 e 2.000 µL L$^{-1}$ de água. Foi adicionado leite em pó 10 g L$^{-1}$ como emulsificante natural às concentrações de 2000 µL L$^{-1}$, das quais partiram as demais
diluições. A fim de isolar o efeito do leite em pó presente nas diluições dos óleos, foi adicionado ao experimento um tratamento contendo as mesmas quantidades de leite em pó utilizadas.

Foram utilizadas placas de Petri de 6 cm de diâmetro, contendo meio ágar-água (AA) 2%. Os óleos foram adicionados ao meio antes que este fosse vertido nas placas, após queda da temperatura para 40°C, de modo que as diluições finais atingissem as pré-estabelecidas pelo ensaio. Após a solidificação do meio, 500 μL da suspensão de urediniósporos foram depositados sobre a superfície do meio e espalhados com uma alça de Drigalsky. Em seguida, as placas foram acondicionadas em BOD, a 23°C, no escuro, por 24 horas.

O experimento foi realizado em delineamento inteiramente casualizado (DIC), com duas placas para cada tratamento, cada uma dividida em quatro quadrantes, num total de oito repetições.

Após a incubação, a germinação foi paralisada pela adição de quatro gotas de solução de lactoglicerol. Em seguida, foi avaliada a percentagem de germinação dos urediniósporos em microscópio estereoscópico trinocular, sendo avaliados 50 urediniósporos por quadrante.

3.6.2 Experimento 2: Óleos essenciais no controle da ferrugem do cafeeiro em casa de vegetação

Neste experimento foram testados os óleos essenciais de tomilho, cravo-da-índia, eucalipto, canela, citronela, árvore-de-chá, nim e capim-limão, na concentração de 1.000 μL L⁻¹, leite em pó 10 g L⁻¹, acibenzolar-S-metil (ASM) 200 mg L⁻¹ como padrão de indução de resistência, fungicida tebuconazole 200 μL L⁻¹ como padrão de controle e uma testemunha inoculada (água destilada).

Mudas de cafeeiro das cultivares Mundo Novo 379/19, Catuai 1AC 62 e Catuaí 2SL, com um ano de idade, foram pulverizadas com os tratamentos até o ponto de escorregamento, utilizando-se um pulverizador manual. Após 30 dias, as plantas foram novamente pulverizadas com os mesmos tratamentos. Sete dias após a primeira aplicação, as plantas foram inoculadas com H. vastatrix, mediante pulverização com uma suspensão de urediniósporos e, em seguida, submetidas a uma câmara úmida, no escuro, por um período de 60 horas.

O experimento foi conduzido em delineamento de blocos casualizados (DBC), com três repetições, sendo cada parcela composta por seis plantas.

Foram realizadas cinco avaliações da ferrugem, a partir dos 30 dias após a inoculação, em intervalos de 11 dias, utilizando-se a escala diagramática proposta por Cunha et al. (2001). Em seguida, foram calculadas as áreas abaixo da curva de progresso da incidência (AACPID) e da severidade da doença (AACPSD), conforme Shaner & Finney (1977), por meio da seguinte equação:

$$AACPD = \sum_{i=1}^{n-1} \frac{\Sigma[(X_i + X_{i+1})/2](t_{i+1} - t_i)}$$

em que: X = intensidade da doença; t = tempo e n = número de avaliações no tempo.
3.6.3 Experimento 3: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeeiro contra *Hemileia vastatrix*

Para avaliar o efeito sistêmico em cultivares de cafeeiro e seus efeitos no controle da ferrugem, foram realizados três experimentos, separadamente, com as cultivares Mundo Novo 379/19, Catuai IAC 62 e Catuai 2SL. Estes experimentos foram realizados simultaneamente.

Foram testados os óleos essenciais mais promissores obtidos no experimento anterior, no caso, o óleo tomilho na cultivar Catuai 2SL, o óleo de cravo-da-india na cultivar Catuai IAC 62 e o óleo de citronela na cultivar Mundo Novo 379/19. Os óleos foram utilizados na concentração de 1.000 μL L⁻¹. Em cada um dos experimentos foram adicionados os tratamentos acibenzolar-S-metyl (ASM) 200 mg L⁻¹, tebuconazole 200 μL L⁻¹, leite em pó 10 g L⁻¹ e testemunha (água destilada).

Aos 12 meses de idade, as plantas foram marcadas e separadas em metade inferior e superior. Realizou-se a aplicação dos tratamentos somente na metade inferior das plantas, utilizando um pulverizador manual, até atingir o ponto de escorregamento. Após 30 dias, as plantas foram novamente pulverizadas na metade inferior com os mesmos tratamentos. Sete dias após a primeira aplicação, realizaram-se as inoculações em ambas as partes da planta, inferior e superior. A inoculação das plantas foi realizada conforme metodologia descrita no experimento anterior.

O experimento foi conduzido em delineamento de blocos casualizados (DBC), com três repetições, sendo cada parcela composta por seis plantas.

Foram realizadas cinco avaliações da ferrugem separadamente em cada uma das partes, a partir dos 30 dias após a inoculação, em intervalos de 11 dias, utilizando-se a escala diagramática proposta por Cunha et al. (2001). Em seguida, foram calculadas as áreas abaixo da curva de progresso da incidência (AACPID) e a severidade da doença (AACPSD), conforme Shaner & Finney (1977).

3.6.4 Experimento 4: Avaliação da toxidez dos óleos essenciais na germinação de conídios e no crescimento micelial de *Cercospora coffeicola*

Para a avaliação da toxidez dos óleos essenciais na germinação de *C. coffeicola*, foram testados os óleos de tomilho, cravo-da-india, eucalipto, canela, citronela, árvore-de-chá, nim e capim-limão, nas concentrações de 0, 250, 500, 1.000, 1.500 e 2.000 μL L⁻¹ de água. Foi adicionado leite em pó 10 g L⁻¹ como emulsificante natural às concentrações de 2.000 μL L⁻¹, das quais partiram as demais diluições. A fim de isolar o efeito do leite em pó presente nas diluições dos óleos, foi adicionado ao experimento um tratamento contendo as mesmas quantidades de leite em pó utilizadas.

Foram utilizadas placas de Petri de 6 cm de diâmetro, com meio ágar-água (AA) 2%. Os tratamentos foram adicionados ao meio antes que este fosse vertido nas placas, após queda da temperatura para 40°C, de modo que as diluições finais atingissem as pré-estabelecidas pelo ensaio. Após a solidificação do meio, 500 μL da suspensão de conídios foram depositados sobre a superfície do meio e espalhados com uma alça de Drigalsky. Em seguida, as placas foram acondicionadas em BOD, a 25°C, com fotoperíodo de 12 horas de luz, por 24 horas.
O experimento foi realizado em delineamento inteiramente casualizado (DIC), com duas placas para cada tratamento cada uma, dividida em quatro quadrantes, num total de oito repetições.

Após a incubação, a germinação foi paralisada pela adição de quatro gotas de solução de lactogliceral. Em seguida, foi avaliada a percentagem de germinação dos conídios em microscópio de luz, sendo avaliados 30 conídios por quadrante.

Para avaliar a toxidez dos óleos essenciais sobre o crescimento micelial de C. coffeicola foram testados os óleos essenciais de tomilho, cravo-da-índia, eucalipto, canela, citronela, árvore-de-chá, nim e capim-limão na concentração de 1.000 µL L⁻¹ de água. Como emulsificante natural foi utilizado leite em pó, na concentração 10 g L⁻¹. Foram adicionados ao experimento dois tratamentos, um composto somente por leite em pó 10 g L⁻¹ e uma testemunha composta por água destilada.

Foram utilizadas placas de Petri de 11 cm de diâmetro com meio batata, dextrose e ágar (BDA) 2%. Os meios foram preparados e vertidos nas placas conforme metodologia descrita no experimento anterior. No centro de cada placa, foi adicionado um disco de meio de 6 mm de diâmetro contendo micélio jovem de C. coffeicola. Em seguida, as placas foram acondicionadas em BOD a 25°C e fotoperíodo de 12 horas, permanecendo nessa condição até o final das avaliações.

O experimento foi realizado em delineamento inteiramente casualizado (DIC), com oito repetições, sendo cada parcela composta de dois vasos com três plantas.

Foram realizadas avaliações do diâmetro das colônias a cada quatro dias, desde a inoculação, até que o micélio do tratamento testemunha ocupasse toda a superfície do meio. Em seguida, foi calculado o índice de velocidade do crescimento micelial (IVCM), por adaptação da fórmula de Maguire (1962).

3.6.5 Experimento 5: Óleos essenciais no controle da cercosporiose do cafeeiro em casa de vegetação

Neste experimento, foram testados os óleos essenciais de tomilho, cravo-da-índia, eucalipto, canela, citronela, árvore-de-chá, nim e capim-limão na concentração de 1.000 µL L⁻¹, leite em pó 10 g L⁻¹, acibenzolar-S-metil (ASM) 200 mg L⁻¹ como padrão de indução de resistência e uma testemunha inoculada (água destilada).

Mudas de cafeeiro das cultivares Mundo Novo 379/19, Catuai IAC 62 e Catucai 2SL, com nove meses de idade, foram pulverizadas com os tratamentos até o ponto de escorrimento, utilizando-se um pulverizador manual. Após 30 dias, as plantas foram novamente pulverizadas com os mesmos tratamentos. Sete dias após a primeira aplicação, as plantas foram inoculadas com C. coffeicola mediante uma pulverização com uma suspensão de conídios e, em seguida, submetidas a uma câmara úmida por 14 horas.

O experimento foi conduzido em delineamento de blocos casualizados (DBC), com três repetições, sendo cada parcela composta por seis plantas.
Foram realizadas cinco avaliações da cercosporiose, a partir dos 21 dias após a inoculação, em intervalos de 14 dias, utilizando-se a escala diagramática proposta por Oliveira et al. (2001). Em seguida, foram calculadas as áreas abaixo da curva de progresso da incidência (AACPID) e a severidade da doença (AACPSD), conforme Shaner & Finney (1977).

3.6.6 Experimento 6: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeiro contra Cercospora coffeicola

Para avaliar a proteção sistêmica em diferentes cultivares de cafeiro e seus efeitos no controle da cercosporiose, foram realizados três experimentos, um com cada cultivar (Mundo Novo 379/19, Caturai IAC 62 e Catucai 2SL).

Foram testados os dois óleos essenciais mais promissores obtidos no experimento anterior, no caso, os óleos de canela e citronela, na concentração de 1.000 μL L⁻¹, acibenzolar-S-metil (ASM) 200 mg L⁻¹, fungicida tebuconazole 200 μL L⁻¹, leite em pó 10 g L⁻¹ e testemunha (água destilada).

Aos nove meses de idade, as plantas foram marcadas, separadas em duas partes, metade inferior e metade superior. Realizou-se a aplicação dos tratamentos somente na metade inferior das plantas, utilizando-se um pulverizador manual, até atingir o ponto de escorrimento. Após 30 dias, as plantas foram novamente pulverizadas na metade inferior com os mesmos tratamentos. Sete dias após a primeira aplicação, realizaram-se as inoculações em ambas as metades das plantas, inferior e superior. A inoculação das plantas foi realizada conforme metodologia descrita no experimento anterior.

O experimento foi conduzido em delineamento de blocos casualizados (DBC), com três repetições, sendo cada parcela composta por seis plantas.

3.6.7 Experimento 7: Estudo da germinação e do desenvolvimento micelial in vivo de conídios de Cercospora coffeicola

3.6.7.1 Instalação do experimento e inoculação

Para a avaliação da germinação e do desenvolvimento micelial de C. coffeicola in vivo, foram utilizadas plantas de cafeiro das cultivares Mundo Novo 379/19, Caturai IAC 62 e Catucai 2SL, com nove meses de idade, cultivadas conforme descrito no item 3.4.

Foram testados os dois óleos essenciais mais promissores para o controle da cercosporiose obtidos no Experimento 5 (item 3.6.5), no caso, os óleos essenciais de canela e citronela e uma testemunha (água destilada). Os óleos foram utilizados na concentração de 1.000 μL L⁻¹.
As plantas foram pulverizadas até o ponto de escorrimento, utilizando-se um pulverizador manual e, dois dias após a aplicação, foram coletadas sete folhas de cada tratamento, destacando-se as folhas do terceiro par. Bandejas plásticas previamente desinfetadas com álcool foram preparadas para a recepção das folhas. No fundo das bandejas foram colocadas esponjas de látex laminadas e sobre as mesmas foram colocadas duas folhas de papel germista umedecidas com água destilada. Em seguida, foram desenhados seis círculos de 1 cm de diâmetro com caneta de marca permanente na superfície abaxial das folhas e, em seguida, as folhas foram acomodadas em bandejas. No centro de cada círculo, foram depositados 25 µL da suspensão de 1,5 x 10⁵ conídios de *C. coffeicola* mL⁻¹. Após a inoculação, as bandejas foram cobertas com plástico transparente e dispostas em câmara de crescimento a 25°C, até o final das coletas.

3.6.7.2 Coleta das amostras para microscopia

As coletas das amostras serão observadas em microscopia eletrônica de varredura (MEV) foram realizadas nos tempos de 4, 8, 16 e 48 horas após inoculação. As coletas foram feitas por meio de cortes circulares de 5 mm de diâmetro, realizados com bisturi, dentro de cada círculo onde foram realizadas as inoculações. Os fragmentos foram colocados em microtubos de 1,5 mL contendo fixador (Karnovsky’s modificado) e, em seguida, armazenados em geladeira, a 4°C.

O preparo e a observação das amostras em MEV foram realizados no Laboratório de Microscopia e Análise Ultra-Estrutural (LME), no Departamento de Fitopatologia da Universidade Federal de Lavras, MG.

3.6.7.3 Preparo das amostras para microscopia eletrônica de varredura

Depois de imerso em solução fixativa (Karnovsky’s modificado), pH 7,2, por um período mínimo de 24 horas, oito fragmentos de cada tratamento foram transferidos para uma solução tampão de cacodilato 0,05 M e lavados três vezes, durante 10 minutos. As secções foram transferidas para solução de tetroxido de ósmio 1,0% em água por 1 hora, lavadas em água destilada por três vezes e desidratadas em uma série de acetona (30%, 50%, 70%, 90% e 100%, por três vezes). Após essa desidratação, as amostras foram levadas ao aparelho de ponto crítico Balzers CPD 030 para substituição da acetona por CO₂ e complementação da secagem.

Os espécimes obtidos foram montados em suportes de alumínio stubs com fita de carbono sobre uma película de papel alumínio e cobertos com ouro no evaporador Balzers SCD 050, para observação em microscópio eletrônico de varredura LEO EVO 40. As imagens foram geradas e registradas digitalmente, nas condições de trabalho de 20 Kv e distância de trabalho de 10 mm. As imagens geradas foram gravadas e abertas no Software Photopaint do pacote Corel Draw 12.
3.7 Análises estatísticas

As análises estatísticas foram realizadas em software estatístico Sisvar v. 4.0. (Ferreira, 2000). Para a comparação de médias qualitativas, utilizou-se o teste de Scott-Knott (p<0.05) e, para médias quantitativas, foram gerados gráficos de regressão. Para a confecção dos gráficos de regressão, utilizou-se o programa Excel do Microsoft Office 2007. Dados de percentagem de germinação de urediniósporos e de conídios foram transformados para -2.

4. RESULTADOS E DISCUSSÃO

4.1 Experimento 1: Avaliação da toxidez dos óleos essenciais na germinação de urediniósporos de Hemileia vastatrix

Todos os óleos essenciais reduziram a germinação de urediniósporos de *H. vastatrix* de forma quadrática com o aumento das concentrações (Figura 1). Os óleos essenciais de canela, citronela, capim-limão, cravo-da-índia, árvore-de-chá e tomilho reduziram totalmente a germinação dos conídios a partir da concentração de 1.000 µL L⁻¹, com DL₅₀ (concentração capaz de promover a inibição ou a morte de 50% dos urediniósporos viáveis) estimadas em 333, 415, 530, 457, 327 e 316 µL L⁻¹, respectivamente (Figura 2).

Os óleos essenciais de nimeucalipto promoveram 100% de inibição da germinação dos urediniósporos a partir das concentrações de 1.500 e 2.000 µL L⁻¹, com DL₅₀ estimadas em 1.165 e 1.533 µL L⁻¹, respectivamente. O tratamento constituído de leite em pó não apresentou diferença significativa entre as doses utilizadas e a testemunha.

Os resultados obtidos neste experimento corroboram com os obtidos por alguns autores. Abreu (2006), utilizando o óleo essencial de canela, verificou redução total da germinação de *A. solani* a partir da concentração de 750 µL L⁻¹. Possivelmente, os compostos cinamaldeídos e eugenol presentes no óleo de canela foram os responsáveis por tal inibição, por apresentarem propriedades antimicrobianas já comprovadas (Montes-Belmont & Carvajal, 1998). Estes resultados demonstram que os micro-organismos diferem em sua resistência a determinados óleos essenciais, ou seja, os óleos apresentam uma capacidade específica a determinados micro-organismos, o que é positivo para o manejo de doenças no campo, uma vez que, nestes, há a ocorrência de muitos micro-organismos benéficos ao cafetiro.

Segundo Wilson et al. (1997), óleos essenciais de *Cymbopogon* sp., *Thymus* sp. e de *Cynammomum* sp. possuem como constituintes alguns monoterpéneos, como d-limoneno, cineol e b-mirceno, anetol, pinaldépido, carvaerol, carvone, limoneno, α-felandreno e α-pineno, em grandes quantidades, sendo capazes de inibir a germinação de vários patógenos. Estas substâncias, quando em contato direto com os microrganismos, promovem a permeabilidade das membranas celulares,
causando extravasamento dos seus constituintes (Piper et al., 2001; Amaral & Bara, 2005; Rasooli et al., 2006).

FIGURA 1. Porcentagem de germinação de urediniósporos de *Hemileia vastatrix*, submetidos a diferentes concentrações (0, 250, 500, 1.500 e 2.000 μL L⁻¹) dos óleos essenciais de canela (A), citronela (B), capim-limão (C), cravo-da-india (D), eucalipto (E), árvore-de-chá (F), nim (G) e tomilho (H). Dados transformados para • = .
FIGURA 2. DL₅₀ (concentração capaz de promover a imibição ou morte de 50% dos urediniosporos viáveis de *Hemileia vastatrix* em μL L⁻¹) dos óleos essenciais de eucalipto (EU), nim (NI), cravo-da-india (CR), capim-limão (CL), citronela (CI), canela (CA), árvore-de-chá (ME) e tomilho (TO).

4.2 Experimento 2: Óleos essenciais no controle da ferrugem do cafeeiro em casa de vegetação

No experimento realizado em casa de vegetação com as três cultivares de cafeeiro, não foi observado nenhum sintoma de fitotoxidade em razão da aplicação dos óleos essenciais. Houve interação significativa para a área abaixo da curva de progresso da incidência (AACPID) e da severidade (AACPSD) da ferrugem, entre as cultivares e os produtos utilizados, ou seja, houve um comportamento diferente das cultivares em relação aos produtos testados.

Na cultivar Catucai 2SL, o tratamento padrão tebuconazole reduziu a AACPID e a AACPSD em 77,6% e 93,9%, respectivamente, em relação à testemunha inoculada, diferindo dos demais tratamentos (Figura 3 e 4). Aclibenzolar-S-metil e os óleos essenciais de tomilho e cravo-da-india reduziram a incidência da ferrugem em 56,6%, 55,5% e 54,3%, respectivamente, sem diferirem entre si, seguidos dos óleos essenciais de capim-limão, árvore-de-chá e citronela, os quais reduziram a incidência em 45,7%, 43,6% e 42,7%, respectivamente (Figura 3). Os demais óleos promoveram reduções de 22,3% a 28,3%. Em relação a AACPSD, os óleos essenciais de tomilho, citronela, cravo-da-india e capim-limão proporcionaram controles de 83,0%, 77,2%, 73,7% e 70,8%, respectivamente, seguidos de aclibenzolar-S-metil, óleos essenciais de canela e árvore-de-chá, com controles de 53,3%, 49,1% e 44,8%, respectivamente (Figura 4). Os óleos essenciais de nim e eucalipto reduziram a AACPSD em 38,5% e 30,8%, respectivamente. Durante as avaliações da ferrugem em casa de vegetação, foi observada esporulação bastante reduzida nas folhas doentes da cultivar Catucai 2SL, fato atribuído à resistência horizontal desta cultivar à ferrugem do cafeeiro.

Na cultivar Catuai IAC 62, o fungicida tebuconazole reduziu a AACPID da ferrugem em 78,75%, seguido do óleo essencial de cravo-da-india, com redução de 26,3% (Figura 5). Os óleos essenciais de capim-limão, canela, tomilho, árvore-de-chá, citronela e aclibenzolar-S-metil reduziram a incidência de doença em 15,5%, 15,0%, 13,2%, 12,1%, 12,0% e 7,9%, respectivamente, sem diferirem entre si. Com relação à AACPSD, o fungicida tebuconazole superou todos os demais tratamentos,
reduzindo-a em 94.8% (Figura 6). Os óleos essenciais de cravo-da-india e capim-limão foram os mais promissores, promovendo redução da severidade em 67,9 e 67,7%, respectivamente, seguidos de árvore de chá, com redução de 55,4%. O óleo essencial de canela reduziu a AACPSD em 45,3%, seguido dos óleos essenciais de tomilho e citronela, com controles de 37,5 e 32,7%, respectivamente.

O tratamento padrão de indução de resistência, acibenzolar-S-metil, reduziu a severidade da doença em 12,1%. Os óleos essenciais de eucalipto e nim não apresentaram eficiência na redução da incidência e da severidade da ferrugem.

FIGURA 3. Área abaixo da curva de progresso da incidência da ferrugem (AACPID) na cultivar Catucai 2SL tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de tomilho (TO), cravo-da-india (CR), capim-limão (CL), árvore-de-chá (ME), citronela (CI), nim (NI), canela (CA) e eucalipto (EU), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p<0,05).

FIGURA 4. Área abaixo da curva de progresso da severidade da ferrugem (AACPSD) na cultivar Catucai 2SL tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de tomilho (TO), citronela (CI), cravo-da-india (CR), capim-limão (CL), canela (CA), árvore-de-chá (ME), nim (NI) e eucalipto (EU), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p<0,05).
FIGURA 5. Área abaixo da curva de progresso da incidência da ferrugem (AACPID) na cultivar Catuai IAC 62 tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de cravo-da-india (CR), capim-limão (CL), canela (CA), tomilho (TO), árvore-de-chá (ME), citronela (CI), nim (NI) e eucalipto (EU), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

FIGURA 6. Área abaixo da curva de progresso da severidade da ferrugem (AACPSD) na cultivar Catuai IAC 62 tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de cravo-da-india (CR), capim-limão (CL), árvore-de-chá (ME), canela (CA), tomilho (TO), citronela (CI), eucalipto (EU) e nim (NI), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

Na cultivar Mundo Novo 379/19, o fungicida tebuconazole reduziu em 83,1% a AACPID e em 97,4% a AACPSD (Figura 7 e 8). Os óleos essenciais de citronela e canela reduziram em 34,0% e 29,6% a incidência da ferrugem, respectivamente, seguidos dos óleos essenciais de eucalipto, árvore-de-chá, tomilho e cravo-da-india, com reduções de 11,3%, 10,2%, 5,7% e 4,8%, respectivamente (Figura 7). Os demais óleos essenciais e acibenzolar-S-metil não reduziram significativamente a incidência da doença.

Com relação à AACPSD na cultivar Mundo Novo 379/19, todos os óleos apresentaram controles semelhantes, exceto o óleo essencial de nim (Figura 8). Os óleos de tomilho, citronela, árvore-de-chá, eucalipto, canela, capim-limão e cravo-da-india reduziram a AACPSD em 47,5%, 42,2%, 46,3%, 46,0%, 38,7%, 38,0% e 37,6%, respectivamente. O óleo essencial de nim reduziu em
10,9% a severidade da ferrugem. O tratamento padrão de indução de resistência, acibenzolar-S-metil, não reduziu significativamente a severidade da doença.

FIGURA 7. Área abaixo da curva de progresso da incidência da ferrugem (AACPID) na cultivar Mundo Novo 379/19 tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de citronela (CI), canela (CA), eucalipto (EU), árvore-de-chá (ME), tomilho (TO), cravo-da índia (CR), nim (NI) e capim-limão (CL), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p<0,05).

FIGURA 8. Área abaixo da curva de progresso da severidade da ferrugem (AACPSD) na cultivar Mundo Novo 379/19 tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de tomilho (TO), citronela (CI), árvore-de-chá (ME), eucalipto (EU), canela (CA), capim-limão (CL), cravo-da índia (CR) e nim (NI), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p<0,05).

Os resultados apresentados neste trabalho com a cultivar Catucai 2SL assemelham-se aos observados por Costa et al. (2007) que utilizaram o acibenzolar-S-metil 200 μL L⁻¹ e o fungicida tetracronazole (triazol) para o controle da ferrugem em caféiro cultivar Catucai IAC 144, oito dias antes da inoculação. Os autores verificaram reduções de 47,14% e 99,6%, respectivamente, na severidade da ferrugem. Ribeiro Júnior (2008) também verificou reduções de 86,0% e 80,0%, na AACPSD e na
AACPID, respectivamente, em cafeeiro tratado sete dias antes da inoculação com o fungicida epoxicoanazol + piraclostrobina.

FIGURA 9. Plantas de cafeeiro das cultivares Catuai IAC 62 (A), Catuai 2SL (B) e Mundo Novo 379/19 (C), aos 74 dias após inoculação com *Hemileia vastatrix*. Testemunha (TI), óleos essenciais de cravo-da-india (CR), tomilho (TO) e citronela (CI), na concentração de 1.000 μL L⁻¹, tebuconazole (FU) 200 μL L⁻¹ e acibenzolar-S-metil (ASM) 200 mg L⁻¹.
Alguns trabalhos têm relatado a eficiência do óleo essencial de tomilho no controle de doenças em outros patossistemas, como foi observado na cultivar Catuai 2SL e Mundo Novo 379/19. Pereira et al. (2008) verificaram redução de 16,1% na área abaixo da curva de progresso do número de lesões da cercopsoriase (AACPNL) em plantas de cafeeiro tratadas com óleo essencial de tomilho 500 μL L⁻¹, sete dias antes da inoculação. Medice et al. (2007) observaram reduções de 35% a 62% na severidade da ferrugem-asiática da soja em diferentes cultivares tratadas com os óleos essenciais de tomilho, citronela, eucalipto e nim, nas concentrações de 300; 500; 1.000 e 1.000 μL L⁻¹, respectivamente, sete dias antes da inoculação.

Rios et al. (2003), pesquisando o óleo essencial de citronela no controle de C. acutatum, agente causal da flor-preta-do-morangueiro, observaram que, nas concentrações de 5.000, 10.000 e 15.000 μL⁻¹, houve redução parcial do crescimento microalga in vivo, indicando que o óleo de citronela apresenta ação direta sobre o patógeno na planta. Já Silva (2007) utilizou o óleo essencial de citronela no controle do mal-do-pamá (Fusarium oxysporum f. sp. cubense (Foc)) em banana (Musa spp.) e verificou proteção de 50% na incidência da doença em relação à testemunha, concordando com os resultados observados neste trabalho para as cultivares Catuai 2SL e Mundo Novo 379/19.

O controle parcial promovido pelo óleo essencial de canela nas cultivares Catuai IAC 62 e Mundo Novo 379/19 concorda com os resultados obtidos por Abreu (2006), que relatou reduções de 26%, 62% e 95%, respectivamente, na incidência da pinta-preta (A. solani) em tomateiro (Solanum lycopersicum L.) tratado com óleo essencial de canela nas concentrações de 500, 750 e 5.000 μL L⁻¹, respectivamente. Em experimento realizado em campo, Abreu (2006) observou redução de 12,5% e 32,8% na incidência da doença em folíolos de tomateiro tratados com óleo essencial de canela nas concentrações de 3.000 e 5.000 μL L⁻¹, respectivamente.

4.3 Experimento 3: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeeiro contra Hemiclavia vastatrix

No experimento realizado em casa de vegetação com a cultivar Catuai 2SL, o fungicida tebuconazole reduziu a AACPID e a AACPSD na metade inferior (tratada) das plantas em 86,0% e 85,5%, respectivamente, seguido de acibenzolar-S-metil, com reduções de 51,4% e 50,7%, respectivamente (Figura 10). Na metade superior (não tratada), tebuconazole e acibenzolar-S-metil reduziram a incidência em 61,3% e 57,0%, respectivamente, e a severidade da ferrugem em 64,3% e 54,3%, respectivamente. O óleo essencial de tomilho não diferiu da testemunha, em ambas as partes da planta.
FIGURA 10. Área abaixo da curva de progresso da incidência (AACPID) (A) e severidade da ferrugem (AACPSD) (B) nas plantas de cafeeiro da cultivar Catanai 2SL cuja metade inferior foi tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleo essencial de tomilho (TO) 1 000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

Na cultivar Catanai IAC 62, tebuconazole reduziu a AACPID na metade inferior (tratada) das plantas em 73,7%, seguido de acibenzolar-S-metil e óleo essencial de cravo-da-india, com reduções de 28,7% e 25,0%, respectivamente (Figura 11A). Na metade superior (não tratada) das plantas, tebuconazole e acibenzolar-S-metil reduziram a incidência da doença em 43,9% e 34,0%, respectivamente. Nesta, o óleo essencial de cravo-da-india não diferiu da testemunha. Com relação à severidade da ferrugem, verificou-se que o fungicida tebuconazole reduziu em 70,2% a AACPSD, seguido de acibenzolar-S-metil e óleo essencial de cravo-da-india, com reduções de 29,8% e 22,1%, respectivamente (Figura 11B). Na metade superior, somente tebuconazole promoveu a redução da AACPSD, sendo esta de 45,0%.
FIGURA 11. Área abaixo da curva de progresso da incidência (AACPID) (A) e severidade da ferrugem (AACPSD) (B) nas plantas de cafeeiro da cultivar Catuai IAC 62 cuja metade inferior foi tratada com tebuconazole (FU) 200 µL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleo essencial de cravo-da-índia (CR) 1.000 µL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p<0,05).

Na cultivar Mundo Novo 379/19, somente o fungicida tebuconazole promoveu reduções significativas da AACPID e AACPSD na metade inferior (tratada) das plantas, sendo estas de 86,6% e 88,5%, respectivamente (Figura 12). No entanto, na metade superior (não tratada) das plantas, o mesmo fungicida e o acibenzolar-S-metil reduziram a incidência da ferrugem em 54,5% e 44,0%, e a severidade em 57,3% e 47,6%, respectivamente. O óleo essencial de citronela não reduziu significativamente a AACPID e a AACPSD, em ambas as partes da plantas. O fungicida tebuconazole promoveu a redução da incidência e da severidade da doença em ambas as partes da planta.

Resultados semelhantes foram observados por Guzzo et al. (2004), em cujo trabalho plantas de cafeeiro cultivar Mundo Novo tratadas com acibenzolar-S-metil induziram proteção local (66% a 97%) e sistêmica (83% a 94%), com duração de até 10 semanas. Em outras pesquisas, realizadas por Cavaleanti et al. (2000), Marchi (2002) e Costa et al. (2007), o acibenzolar-S-metil promoveu somente a redução da incidência da doença na metade inferior das plantas, não apresentando efeito sistêmico.
FIGURA 12 Área abaixo da curva de progresso da incidência (AACPID) (A) e severidade da ferrugem (AACPSD) (B) nas plantas de cafeeiro da cultivar Mundo Novo 379/19 cuja metade inferior foi tratada com tebuconazole (FU) 200 µL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleo essencial de citronela (CI) 1.000 µL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0.05).

Os óleos essenciais testados nas diferentes cultivares não apresentaram controle significativo da doença em ambas as partes da planta, exceto o óleo essencial de cravo-da-india na cultivar Catuai 1AC 62, na qual apresentou um efeito protetor. Pereira et al. (2008), utilizando o óleo essencial de tomilho para o controle da cercosporiose em cafeeiro, verificaram que o controle obtido pelo óleo se deve, principalmente, ao seu efeito direto sobre o patógeno e menos por indução de resistência.

O controle parcial da ferrugem obtido pela aplicação dos óleos essenciais, possivelmente, se deve à presença de compostos tóxicos em grande quantidade, que proporcionam efeito protetor (Schauenberg, 1977; Scortichini & Rossi, 1991; Montes-Belmont & Carvajal, 1998; Amaral & Bara 2005). Tal evidência não impede que estes e outros compostos presentes nos óleos em menores quantidades possam estar contribuindo indiretamente para o controle da doença, por meio da indução de resposta de defesa da planta. Para tal comprovação, são necessários estudos mais aprofundados,
como a quantificação de enzimas relacionadas à defesa da planta e de expressão gênica, podendo esta última desvendar quais os possíveis genes de defesa estariam sendo expressos em razão da aplicação dos óleos.

4.4 Experimento 4: Avaliação da toxidez dos óleos essenciais na germinação de coníodos e no crescimento micelial de Cercospora coffeicola

Todos os óleos essenciais reduziram a germinação de coníodos de C. coffeicola de forma quadrática, com o aumento das concentrações (Figura 13). Os óleos essenciais de tomilho, capim-limão, canela e citronela inibiram totalmente a germinação dos coníodos a partir da concentração de 1.000 μL L⁻¹, com DL₅₀ (concentração capaz de promover a inibição ou morte de 50% dos coníodos viáveis), estimada em 303, 332, 348 e 561 μL L⁻¹, respectivamente (Figura 14).

Os óleos essenciais de cravo-da-india e árvore-de-chá promoveram 100% de inibição da germinação de coníodos a partir das concentrações de 1.500 e 2.000 μL L⁻¹, com DL₅₀ estimadas em 937 e 1416 μL L⁻¹, respectivamente. Os óleos essenciais de eucalipto e ním mostraram-se menos tóxicos que os demais, apresentando DL₅₀ de 2804 e 2816 μL L⁻¹, respectivamente.

Os óleos essenciais de canela e citronela inibiram totalmente o crescimento micelial de C. coffeicola, sem diferir do óleo de ním, o qual apresentou inibição de 95,13% em relação à testemunha (BDA) (Figura 15 e 16). Os óleos essenciais de tomilho e capim-limão reduziram o IVCM em 56,14% e 13,78%, respectivamente, enquanto os demais tratamentos não diferiram da testemunha, pelo teste de Scott-Knott (p≤0,05).

Diversos trabalhos relatam o efeito antimicrobiano de óleos essenciais sobre o desenvolvimento de patógenos. Wilson et al. (1997) e Rozwalska et al. (2008) verificaram a atividade fungitóxica do óleo essencial de capim-limão sobre a germinação de esporos de Botrytis cinerea Persoon ex Fries e sobre o desenvolvimento micelial de Glomerella cingulata (Stonemam) Spauld & Schrenk e C. gloeosporioides. Em outro trabalho, Souza et al. (2004) verificaram que os óleos essenciais de canela de (200 μg mL⁻¹), cravo-da-india (600 μg mL⁻¹) e tomilho (600 μg mL⁻¹) inibiram completamente o desenvolvimento micelial in vitro de Rhizopus sp., Eurotium repens de Bary e Aspergillus niger. Já Santos et al. (2001) relataram a eficiência do óleo essencial de citronela sobre a inibição do desenvolvimento micelial de F. subglutinans f. sp. ananas, causador da fusariose do abacaxizeiro (Ananas comosus (L.) Merr.).

Óleos essenciais de citronela, tomilho e canela apresentam como constituintes alguns monoterpenos como d-limoneno, cineol e b-mirceno (Wilson et al., 1997), anetol, panialdeído, carvacrol, carvone, limoneno, α-felandreno e α-pineno em grandes quantidades que, segundo Caccioni & Guizzardi (1994), são responsáveis pela inibição da germinação de vários patógenos. Segundo Zambonelli et al. (2004), a inibição da germinação e do crescimento micelial evidenciada pelo tomilho se deve à presença de compostos tóxicos, como timol e carvacrol, presentes em grandes quantidades no óleo, os quais apresentam propriedades bactericidas e fungicidas (Pinto et al., 2001).
FIGURA 13. Porcentagem de germinação de conídios de *Cercospora coffeicola* submetidos a diferentes concentrações (0, 250, 500, 1.500 e 2.000 µL L⁻¹) dos óleos essenciais de canela (A), citronela (B), capim-limão (C), cravo-da-india (D), eucalipto (E), árvore-de-chá (F), nim (G) e tomilho (H). Dados transformados para \sqrt{y}.
FIGURA 14. DL₅₀ (concentração capaz de promover a inibição ou morte de 50% dos conídios viáveis de *Cercospora coffeicola* em µL L⁻¹) dos óleos essenciais de nim (NI), eucalipto (EU), árvore-de-chá (ME), cravo-da-india (CR), citronela (CI), canela (CA), capim-limão (CL) e tomilho (TO).

FIGURA 15. Índice de velocidade do crescimento micelial (IVCM) de *Cercospora coffeicola* submetido aos óleos essenciais de cravo-da-india (CR), canela (CA), nim (NI), tomilho (TO), capim-limão (CL), eucalipto (EU), árvore-de-chá (ME) e citronela (CI), na concentração de 1.000 µL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

Em outro trabalho, desenvolvido por Salgado et al. (2003), há o relato do efeito fungistático dos óleos essenciais de *Eucalyptus urophylla* S.T. Blake, *E. camaldulensis* Dehn e *C. citriodora* sobre o crescimento micelial de *Fusarium oxysporum* Schlecht., *Bipolaris sorokiniana* Shoemaker e *B. cinerea*, na concentração de 500 mg L⁻¹. Segundo Charles & Simon (1990), os óleos essenciais de eucalipto são constituídos, de forma geral, de terpenos complexos, como o citronelal e o cineol. Ponce et al. (2003), analisando o poder antimicrobiano do óleo essencial de árvore-de-chá, constataram que a concentração de 500 a 800 µL L⁻¹ foi suficiente para a inibição do crescimento de bactérias pelo método mínimo de concentração.
FIGURA 16. Crescimento micelial de Cercospora coffeicola submetido aos óleos essenciais de árvore-de-chá (ME), citronela (CI), cacularto (EU), capim-limão (CL), tomilho (TO), nim (NI), cravo-da-india (CR) e canela, na concentração de 1.000 µL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI).

4.5 Experimento 5: Óleos essenciais no controle da cercosporiose do cafeeiro em casa de vegetação

No experimento realizado em casa de vegetação com as três cultivares de cafeeiro, não foi observado nenhum sintoma de fitotoxidez em razão da aplicação dos óleos essenciais. Foi observada interação significativa para a área abaixo da curva de progresso da incidência da cercosporiose (AACPID) entre as cultivares e os produtos utilizados. No entanto, para a área abaixo da curva de progresso da severidade da cercosporiose (AACPSD) esta foi significativa. As cultivares Catuai IAC 62 e Catucai 2SL apresentaram menores AACPID em relação à cultivar Mundo Novo 379/19 (Figura 17). O tratamento padrão acibenzolar-S-metil apresentou a maior redução da AACPID, 27,5%, seguido dos óleos essenciais de citronela e canela, com reduções de 12,0% e 10,0%, respectivamente (Figura 18). Os demais tratamentos não diferiram entre si e em relação à testemunha, pelo teste de Scott-Knott (p≤0,05).

O tratamento padrão acibenzolar-S-metil reduziu a AACPSD na cultivar Catucai 2SL em 64,94% em relação à testemunha, seguido do óleo essencial de citronela, com redução de 43,08% (Figura 19). Os óleos essenciais de eucalipto, canela e cravo-da-india também reduziram significativamente a AACPSD em 21,08, 21,05% e 10,80%, respectivamente, sem diferirem entre si.

Na cultivar Catuai IAC 62, acibenzolar-S-metil reduziu a AACPSD em 58,28% em relação à testemunha, seguido do óleo essencial de canela com redução de 38,25% (Figura 20). Os óleos essenciais de capim-limão, árvore-de-chá, tomilho, eucalipto, citronela e nim também reduziram a AACPSD em 27,68%, 20,36%, 18,39%, 18,03%, 16,95% e 15,43%, respectivamente, sem diferirem entre si.
FIGURA 17. Área abaixo da curva de progresso da incidência da cercosporiose (AACPID) das diferentes cultivares de cafeeiro. Médias seguidas de mesma letra não diferem entre si pelo teste de Scott-Knott ($p \leq 0.05$).

FIGURA 18. Área abaixo da curva de progresso da incidência da cercosporiose (AACPID) nas cultivares Catuai 2SL, Catuai IAC 62 e Mundo Novo 379/19 tratadas com óleos essenciais de citronela (CI), canela (CA), capim-limão (CL), nim (NI), arbore-de-chá (ME), tomilho (TO), eucalipto (EU) e cravo-dã-india (CR), na concentração de 1,000 µL L$^{-1}$, acibenzolar-S-metil (AS) 200 mg L$^{-1}$, leite em pó (LP) 10 g L$^{-1}$ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott ($p \leq 0.05$).

Na cultivar Mundo Novo 379/19, o acibenzolar-S-metil reduziu a AACPSD em 55,91%, seguido dos óleos essenciais de citronela e canela, os quais reduziram a AACPSD em 29,69% e 25,02%, respectivamente (Figura 21). Os demais tratamentos não diferiram em relação à testemunha pelo teste de Scott-Knott ($p \leq 0.05$).

Resultados semelhantes foram observados por Pereira et al. (2008), os quais verificaram reduções de 35,0% e 16,1% na área abaixo da curva de progresso do número de lesões (AACPNL), em plantas de cafeeiro tratadas com acibenzolar-S-metil e óleo essencial de tomilho, respectivamente, inoculadas com C. coffeicola, aos sete dias após a aplicação.

Ribeiro Júnior (2008) observou redução de 31% na AACPNL da cercosporiose em plantas de cafeeiro tratadas com acibenzolar-S-metil e inoculadas com C. coffeicola. Em cafeeiro, Patricio et al. (2008) relataram controle de até 55% da cercosporiose do cafeeiro em campo, utilizando acibenzolar-
S-metil. Também trabalhando com cafeeiro, Guzzo et al. (2004) observaram incremento nas atividades de quitinaase e β-1,3-glucanaase, 24 horas após a aplicação foliar de acibenzolar-S-metil, as quais mantiveram-se altas até 35 dias após a aplicação, proporcionando redução na severidade da ferrugem de 60% a 80%.

FIGURA 19. Área abaixo da curva de progresso da severidade da cercosporiose (AACPSD) na cultivar Catucaí 2SL tratada com óleos essenciais de citronela (Cl), eucalipto (EU), canela (CA), cravo-da-india (CR), nim (NI), capim-limão (CL), árvore-de-chá (ME) e tomilho (TO), na concentração de 1.000 µL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

FIGURA 20. Área abaixo da curva de progresso da severidade da cercosporiose (AACPSD) na cultivar Catucaí IAC 62 tratada com óleos essenciais de canela (CA), capim-limão (CL), árvore-de-chá (ME), tomilho (TO), eucalipto (EU), citronela (Cl), nim (NI) e cravo-da-india (CR), na concentração de 1.000 µL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

25
FIGURA 21. Área abaixo da curva de progresso da severidade da cercosporiose (AACPSD) na cultivar Mundo Novo 379/19, tratadas com óleos essenciais de citronela (CI), canela (CA), nim (NI), capim-limão (CL), tomilho (TO), árvore-de-chá (ME), eucalipto (EU) e cravo-da-índia (CR), na concentração de 1 000 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p<0,05).

O óleo de canela tem sido testado com sucesso por alguns autores para o controle de fitopatógenos. Abreu (2006) observou redução de 26%, 62% e 95% na incidência da pintapreta do tomateiro, em plantas tratadas com o óleo essencial de canela, nas concentrações de 500, 750 e 5 000 μL L⁻¹, respectivamente. Já em campo, o autor observou redução de 12,5% e 32,8% na incidência da doença em folíolos de plantas de tomateiro tratadas com óleo essencial de canela nas concentrações de 3 000 e 5 000 μL L⁻¹. Segundo Abreu (2006), o aumento das concentrações do óleo essencial de canela e a diminuição dos intervalos de aplicação proporcionaram um aumento na eficiência do óleo no controle da doença. Possivelmente, o controle parcial da doença, obtido pela aplicação do óleo essencial de canela, se deve à presença dos compostos como cinamaldeído e eugenol que, segundo Montes-Belmont & Carvaljal (1998), são os dois componentes de maiores propriedades antimicrobianas presentes no óleo.

Rios et al. (2003) utilizaram o óleo essencial de citronela no controle de C. acutatum, agente causal da flor-preta-do-morangueiro e observaram que, nas concentrações de 5 000; 10 000 e 15 000 μL⁻¹, houve redução parcial do crescimento micelial in vivo. Silva (2007) utilizou o óleo essencial de citronela no controle do mal-do-panamá (Fusarium oxysporum f. sp. cubense (Foc)) em bananeira (Musa spp.) e verificou que o mesmo proporcionou proteção de 50% na incidência da doença em relação à testemunha.
4.6 Experimento 6: Avaliação do efeito sistêmico dos óleos essenciais mais promissores em cultivares de cafeiro contra Cercospora coffeicola

No experimento realizado em casa de vegetação com a cultivar Catucai 2SL, o fungicida tebuconazole reduziu a AACPID na metade inferior (tratada) das plantas em 51,02%, seguido de acibenzolar-S-metil, com 24,87% (Figura 22A). Acibenzolar-S-metil e os óleos essenciais de canela e citronela reduziram a AACPID na metade superior (não tratada) das plantas em 30,94%, 32,47% e 24,85%, respectivamente, sem diferirem entre si, pelo teste de Scott-Knott (p≤0,05) (Figura 22A). O fungicida tebuconazole reduziu a AACPSD na metade inferior das plantas em 53,15% e os demais tratamentos não diferiram da testemunha somente inoculada e do leite em pó. Na metade inferior, não houve diferença significativa entre os tratamentos (Figura 22B).

O fungicida tebuconazole promoveu a redução da incidência e da severidade da doença na metade inferior das plantas e reduziu somente a incidência da doença na metade superior das plantas. Os óleos essenciais de canela e citronela não promoveram redução significativa da incidência e da severidade da cercosporiose na metade inferior das plantas. No entanto, na metade superior, estes apresentaram controle semelhante ao do fungicida, indicando a presença de substâncias que, por sua vez, protegem os tecidos distantes do local de aplicação.

Resultados semelhantes foram observados por Itako et al. (2008), no qual extratos brutos aquosos de mil-folhas (Achillea millefolium L.), cânfora (Artemisia camphorata Vill.), capim-limão e alecrim (Rosmarinus officinalis L.) não promoveram proteção local em plantas de tomateiro inoculadas com A. solani. No entanto, estes promoveram controle superior ao da testemunha em folhas não tratadas, indicando uma translocação sistêmica dos extratos.

O acibenzolar-S-metil promoveu somente a redução da incidência da doença na metade inferior das plantas, não apresentando um bom efeito protetor, concordando com resultados de outros trabalhos (Cavalcani et al., 2000; Marchi, 2002; Costa et al., 2007). Russ et al. (1996) verificaram que o efeito protetor do acibenzolar-S-metil em plantas de trigo foi menos evidente contra os patógenos Septoria spp. e Puccinia spp.

No experimento realizado com a cultivar Catucai IAC 62, somente o fungicida tebuconazole reduziu a AACPID na metade inferior (tratada) das plantas (28,79%) (Figura 23A). Na metade superior (não tratada), os tratamentos tebuconazole, acibenzolar-S-metil e os óleos essenciais de citronela e canela reduziram a AACPID em 38,65%, 38,82%, 32,11% e 35,07%, respectivamente, em relação à testemunha somente inoculada. Em relação à severidade da cercosporiose na metade inferior das plantas, o fungicida tebuconazole, acibenzolar-S-metil e o óleo essencial de citronela diferiram da testemunha somente inoculada, promovendo reduções de 51,15%, 38,45% e 25,94% na AACPSD (Figura 23B). Na metade superior não houve diferença significativa da AACPSD entre os tratamentos.

Os resultados apresentados neste experimento são similares aos apresentados no experimento anterior, no entanto, o acibenzolar-S-metil não reduziu de forma significativa a AACPID na metade inferior das plantas e, juntamente com o óleo de citronela, reduziu a AACPSD na metade inferior das
mesmas. Bonaldo et al. (2004), utilizando extratos aquosos de eucalipto em plantas de pepino contra
Colletotrichum lagenarium (Pass.) Ells & Halst, agente causal da antracnose, verificaram que o
mesmo, além de apresentar atividade antifúngica direta, promoveu uma indução local de resistência.

FIGURA 22. Área abaixo da curva de progresso da incidência (AACPID) (A) e severidade da
cercosporiose (AACPSD) (B) nas plantas de cafeeiro da cultivar Catucaí 2SL cuja metade
inferior foi tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg
L⁻¹, óleos essenciais de canela (CA) e citronela (CI), na concentração de 1.000 μL L⁻¹, leite
em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre
si, pelo teste de Scott-Knott (*p*≤0,05).

Em relação à cultivar Mundo Novo 379/19, somente foram observadas diferenças
significativas na AACPID e na AACPSD da cercosporiose na metade inferior (tratada) das plantas,
onde o fungicida tebuconazole promoveu reduções de 53,30% e 74,45%, respectivamente, em relação
à testemunha (Figura 24A e B). Os óleos essenciais de canela, citronela e acibenzolar-S-metil não
promoveram reduções significativas da incidência e da severidade da cercosporiose, em ambas as
metades das plantas.
Figura 23. Área abaixo da curva de progresso da incidência (AACPID) (A) e severidade da cercosporiose (AACPSD) (B) nas plantas de cafeeiro da cultivar Catuai IAC 62 cuja metade inferior foi tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de citronela (CI) e canela (CA) na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

A diferença nos resultados observados entre as cultivares Catuaí 2SL, Catuai IAC 62 e Mundo Novo pode ser explicada com base na capacidade e na magnitude das plantas em expressar genes de defesa, que alteram o estado de susceptibilidade para resistência, decorrido em um intervalo de tempo após o contato com o agente indutor. Este fenômeno, conhecido por resistência sistemática induzida (RSI), pode ser ativado por vários agentes bióticos e abióticos (Küc, 1995; Sticher et al., 1997). Tomando-se como base o experimento anterior realizado com as três cultivares, em que foi observada uma menor incidência da cercosporiose na cultivar Catuaí 2SL, postulando-se que esta possua maior capacidade ou velocidade em expressar genes relacionados à defesa, quando tratada com acibenzolar-S-metil e com os óleos essenciais de canela e citronela.
FIGURA 24. Área abaixo da curva de progresso da incidência (AACPID) (A) e severidade da cercosporiose (AACPSD) (B) nas plantas de cafeeiro da cultivar Mundo Novo 379/19 cuja metade inferior foi tratada com tebuconazole (FU) 200 μL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹, óleos essenciais de citronela (CI) e canela (CA), na concentração de 1.000 μL L⁻¹, leite em pó (LP) 10 g L⁻¹ e testemunha (TI). Médias seguidas de mesma letra não diferem entre si, pelo teste de Scott-Knott (p≤0,05).

A proteção sistêmica pode ter ocorrido, em relação aos óleos essenciais de canela e citronela, devido à presença de substâncias que protegem tecidos distantes do local de aplicação dos óleos. É possível que tanto os compostos naturais (óleos essenciais) como os sintéticos (acibenzolar-S-metil), que reduziram eficientemente a incidência da cercosporiose, contenham substâncias que são mobilizadas para tecidos distantes, protegendo as folhas superiores, as quais foram inoculadas sete dias após a aplicação (Costa et al., 2007). No que se refere à proteção sistêmica das plantas, deve-se separar o efeito fungistático das substâncias presentes nos óleos estudados da capacidade de servirem como indutores de resistência, ou seja, de atuarem em rotas metabólicas de defesa, porém, é bem possível que esses dois efeitos tenham ocorrido de maneira sinérgica.

4.7 Experimento 7: Estudo da germinação e do desenvolvimento micelial in vivo de conídios de Cercospora coffeicola

Em todas as cultivares testadas, observou-se que os conídios de C. coffeicola iniciaram a sua germinação aproximadamente quatro horas após inoculação, porém, diferenças foram visualizadas oito horas após a mesma.
Nas observações realizadas em folhas testemunhas da cultivar Catucaí 2SL, às oito horas após inoculação, verificou-se que os conídios de *C. coffeicola* já se apresentavam germinados (Figura 25C) e com pequeno desenvolvimento micelial (Figura 25F), enquanto que, nas folhas tratadas com óleos essenciais de canela e citronela, estes se apresentavam pouco germinados (Figura 25A e C) e com poucas ramificações laterais (Figura 25B e D).

Em relação às observações realizadas em folhas testemunhas da cultivar Catucaí IAC 62, verificou-se que, oito horas após a inoculação, os conídios apresentavam-se germinados, com muitas ramificações laterais (Figura 26C). Já nas folhas tratadas com os óleos essenciais de canela e citronela estes se apresentavam pouco germinados e, em alguns casos, com extravasamento celular (Figura 26A e C). Diferenças maiores puderam ser observadas nas folhas testemunhas 16 horas após a inoculação, quando foi detectado grande desenvolvimento micelial sobre a superfície foliar (Figura 26F). Já nas folhas tratadas com os óleos essenciais ocorreu desenvolvimento micelial (Figura 26B e D).

Nas folhas de cafeeiro da cultivar Mundo Novo 379/19, foram observados resultados semelhantes aos apresentados nas demais cultivares. Os óleos reduziram a germinação dos conídios de *C. coffeicola* e, em alguns casos, promoveram extravasamento celular dos conídios, às oito horas após a inoculação, em relação à testemunha (Figura 27A, C e E), além de reduzirem o desenvolvimento das hifas (Figura 27B, D e F).

Estes resultados corroboram os apresentados no experimento de germinação conídios, em que os óleos de canela e citronela inibiram totalmente a germinação dos conídios à partir da concentração de 1.000 µL L⁻¹.

Resultados semelhantes foram observados por outros autores em outros patossistemas, utilizando a microscopia eletrônica de varredura. Medice et al. (2007) trataram folhas de soja com óleo essencial de tomilho 3.000 µL L⁻¹ e inoculam-nas com urediniósporos de *P. pochyrhyzi* sete dias depois. Pelas observações, os autores relataram redução do tamanho das uréndias em relação à testemunha e número reduzido de urediniósporos do patógeno, os quais também se apresentavam murchos, o que os torna inviáveis. Pereira et al. (2008) também verificaram tal efeito em plantas de cafeeiro tratadas com o óleo essencial de tomilho e inoculadas com *C. coffeicola*.

Segundo Amaral & Bara (2005), os óleos agem possivelmente na parede celular do fungo, provocando o extravasamento do conteúdo celular. Tal fato foi comprovado posteriormente por Rasooli et al. (2006), por meio da microscopia eletrônica de transmissão, em que os óleos essenciais de *Thymus eriocalyx* (Roniger) Jalas e *T. x-porlock* provocaram danos severos às paredes, membranas e organelas celulares dos esporos de *A. niger*. Segundo os autores, a exposição do micélio aos óleos essenciais de *T. eriocalyx* e *T. x-porlock* provocou alterações morfológicas nas hifas, ruptura da membrana plasmática e destruição mitocondrial.
FIGURA 25. Eletromicrografia de varredura de folhas de cafeciro da cultivar Catucai 2SL inoculada com *Cercospora coffeicola* às 8 (A, C e E) e às 16 (B, D e F) horas após inoculação. Plantas tratadas com óleos essenciais de canela 1.000 μL L⁻¹(A e B) e citronela 1.000 μL L⁻¹(C e D). Conídios na fase inicial de germinação (C e D) e redução do desenvolvimento micelial (B e D). Testemunha (água destilada) em processo avançado de germinação (E) e desenvolvimento micelial (F).
FIGURA 26. Eletromicrografia de varredura de folhas de cafeeiro da cultivar Catuai IAC 62 inoculadas com Cercospora coffeicola às 8 (A, C e E) e às 16 (B, D e F) horas após inoculação. Plantas tratadas com óleos essenciais de canela 1.000 μL L⁻¹ (A e B) e citronela 1.000 μL L⁻¹ (C e D). Conídios na fase inicial de germinação (C e D) e pequeno desenvolvimento micelial (B e D). Testemunha (água destilada) em processo avançado de germinação (E) e desenvolvimento micelial (F).
FIGURA 27. Eletromicrografia de varredura de folhas de cafeeiro da cultivar Mundo Novo 379/19 inoculadas com *Cercospora coffeicola*, às 8 (A, C e E) e às 16 (B, D e F) horas após inoculação. Plantas tratadas com óleo essencial de canela 1.000 μL L⁻¹ (A e B) e citronela 1.000 μL L⁻¹ (C e D), apresentando inibição do processo de germinação de conídios (A e C) e redução do desenvolvimento micelial (B e D). Testemunha (água destilada) em processo avançado de germinação (E) e desenvolvimento micelial (F).

Sugere-se, em trabalhos futuros, comprovar o efeito dos óleos essenciais como indutores de resistência, por meio da determinação da atividade de enzimas relacionadas à patogênese, além de elucidar como e quais compostos afetam o patógeno e o metabolismo da planta hospedeira. Os
resultados desse trabalho mostraram que alguns óleos atuam directa e ou indirectamente no processo infecioso de *C. coffeicola* em cafeeiro.

5. CONCLUSSÕES

Os óleos essenciais de canela, citronela, capim-limão, cravo-da-india, árvore-de-chá, tomilho, eucalipto e nim reduzem a germinação dos urediníosporos de *Hemileia vastatrix*.

Os óleos essenciais promovem controle parcial da ferrugem do cafeeiro em casa de vegetação, sendo os óleos de tomilho, cravo e citronela os mais promissores para o controle da doença nas cultivares de Catuai 2SL, Catuai IAC 62 e Mundo Novo 379/19, respectivamente.

O óleo essencial de cravo-da-india promove proteção local e o óleo essencial de citronela promove proteção sistêmica em plantas de cafeeiro contra *H. vastatrix*.

Os óleos essenciais de canela, citronela, capim-limão, cravo-da-india, árvore-de-chá, tomilho, eucalipto e nim reduzem a germinação dos conídios de *Cercospora coffeicola*.

Os óleos essenciais de cravo-da-india, canela, nim, tomilho e capim-limão inibem o crescimento micelial de *C. coffeicola*.

Os óleos essenciais promovem controle parcial da cercosporiose do cafeeiro em casa de vegetação, sendo os óleos de canela e citronela os mais promissores para o controle da doença nas cultivares de Catuai 2SL, Catuai IAC 62 e Mundo Novo 379/19.

Os óleos essenciais de canela e citronela promovem proteção sistêmica em plantas de cafeeiro das cultivares Catuai 2SL e Catuai IAC 62 contra *C. coffeicola*.

Os óleos essenciais de canela e citronela reduzem a germinação e o desenvolvimento micelial de *C. coffeicola in vivo*, promovendo, em alguns casos, o extravasamento do conteúdo celular.

6. JUSTIFICATIVAS DO PROJETO

De modo geral, o projeto foi desenvolvido conforme o previsto. Os experimentos de microscopia eletrônica de varredura foram realizados para ambos patossistema *C. coffeicola* e *H. vastatrix* - cafeeiro, no entanto, devido ao problema ocorrido no funcionamento do microscópio eletrônico de varredura (queima de uma placa), não foi possível a visualização das amostras até a presente elaboração do relatório final. Estes resultados serão apresentados no artigo que estamos preparando.

Adicionalmente foram realizadas coletas de amostras para análises bioquímicas de enzimas relacionadas à defesa da planta (peroxidase, quitinase e β-1,3-glucanase), a fim de caracterizar o efeito dos óleos essenciais como indutores de resistência à ferrugem e a cercosporiose do cafeeiro, como uma forma de complementar os resultados a serem publicados nos artigos científicos. O experimento
para a coleta das amostras a serem analisadas já foi concluído, e as enzimas, no momento estão sendo quantificadas em laboratório e serão apresentadas em artigo que está sendo preparado para submissão.

7 REFERÊNCIAS BIBLIOGRÁFICAS

RIBEIRO JÚNIOR, P.M. Fosfotos na proteção e na indução de resistência do cafeeiro contra Hemileia vastatrix e Cercospora coffeicola. 2008. 105 p. Tese (Doutorado em Fitopatologia) - Universidade Federal de Lavras, Lavras.

Extrato de casca de café, óleo essencial de tomilho e acibenzolar-S-metil no manejo da cercosporiose-do-cafeeiro

Ricardo Borges Pereira(1), Eduardo Alves(1), Pedro Martins Ribeiro Júnior(1), Mário Lúcio Villela de Resende(1), Gilvaine Giavarelli Lucas(1) e Josimar Batista Ferreira(2)

(1) Universidade Federal de Lavras, Departamento de Fitopatologia, Caixa Postal 3037, CEP 37200-000 Lavras, MG. E-mail: ricardoborgespereira@yahoo.com.br, ealves@ufba.br, ribeirojuniorm@yahoo.com.br, mlucco@ufba.br, gilvainelucas@yahoo.com.br.
(2) Universidade Federal do Acre, Campus Florestal, Centro de Ciências Biológicas e da Natureza, Estrada Canela Fina, s/n, CEP 69900-000 Cruzeiro do Sul, AC. E-mail: josimarferreira@gmail.com

Resumo – O objetivo do presente trabalho foi avaliar o efeito de concentrações de extrato de casca de café, óleo essencial de tomilho e acibenzolar-S-metil na germinação, no crescimento micelial e no desenvolvimento in vivo de *Cercospora coffeicola*, além de caracterizar a eficiência destes como inductores de resistência, e determinar a atividade da enzima peroxidase e o acúmulo de lignina nos tecidos de cafeína. O extrato de casca de café não afetou a germinação, entretanto, inibiu o crescimento micelial proporcionalmente ao aumento das concentrações. O óleo essencial de tomilho inibiu a germinação e o crescimento micelial com o aumento das concentrações. O extrato de casca de café e o acibenzolar-S-metil não afetaram a germinação nem o desenvolvimento dos tubos germinativos, diferentemente do óleo essencial de tomilho. Mudas tratadas com acibenzolar-S-metil, extrato de casca de café e óleo essencial de tomilho, apresentaram picos de atividade da peroxidase aos 2 e 11, 7 e 11 e, 2 e 9 dias após a aplicação dos tratamentos, respectivamente. Os tratamentos não diferiram quanto à concentração de lignina. Extrato de casca de café e acibenzolar-S-metil induziram resistência em mudas de cafeína contra *C. coffeicola* e o óleo essencial de tomilho apresentou efeito tóxico ao patógeno.

Termos para indexação: *Cercospora coffeicola*, *Coffea arabica*, indução de resistência, microscopia eletrônica de varredura.

Coffee berry husk extract, thyme essential oil and acibenzolar-S-methyl in the control of brown eye spot of coffee tree

Abstract – The objective of this work was to assess the effect of the coffee berry husk extract, thyme essential oil and acibenzolar-S-methyl on the germination and mycelial growth and on in vivo development of *Cercospora coffeicola*, and to characterize their efficiency as resistance inducers in coffee plants, and to determine the peroxidase activity and lignin accumulation in tissues of coffee tree. The coffee berry husk extract presented no toxic effect on germination; however, it inhibited the mycelial growth proportionally to the increase of the concentrations. The thyme essential oil inhibited the germination and the mycelial growth with the increase of the concentrations. Both coffee berry husk extract and acibenzolar-S-methyl neither affected the germination nor the development of germinative tubes, differently of thyme essential oil. Seedlings treated with acibenzolar-S-methyl, coffee berry husk extract and thyme essential oil presented peaks of peroxidase activity at 2nd and 11th, 7th and 11th and, 2nd and 9th days after treatment, respectively. The treatments did not differ in lignin content. Coffee berry husk extract and acibenzolar-S-methyl induced resistance in coffee seedlings against *C. coffeicola*, and thyme essential oil presented toxic effect on the pathogen.

Index terms: *Cercospora coffeicola*, *Coffea arabica*, resistance induction, scanning electron microscopy.

Introdução

A cercosporiose do cafeíno (*Coffea arabica* L.), causada por *Cercospora coffeicola* Berk & Cooke é uma das principais doenças das lavouras cafeiras e pode causar prejuízos diretos e indiretos aos produtores. Essa doença ocupa posição de destaque na cultura do café, pois pode afetar mudas em formação e lavouras adultas, e os sintomas podem ser observados em folhas e frutos (Zambolin et al., 2005). O patógeno normalmente causa intensa desfolha da planta, o que reduz a produção. Ataques intensos do patógeno no
campo ocorrem, principalmente, em regiões altas e com solos pouco férteis, e pode causar perdas de até 30% na produção (Pozza et al., 2000).

Frequentemente, para o controle convencional da cercosporiose, tém sido utilizados fungicidas protetores e sistêmicos. No entanto, a resistência induzida, aplicada com sucesso recentemente em outros patosistemas, tem sido considerada promissora no controle de C. coffeicola. Contudo, o uso eficiente dessa estratégia depende da disponibilidade de eficientes eiciadores (Gullino et al., 2000). Trabalhos têm sido conduzidos com o intuito de testar novos compostos eiciadores capazes de ativar, de forma eficiente, os mecanismos de defesa em plantas.

Óleos essenciais apresentaram eficiência no controle de doenças, tanto por sua ação fungitóxica, que inibe o crescimento micelial e a germinação de esporos, quanto pela presença de compostos eiciadores. Medics et al. (2007) observaram redução na severidade da ferrugem-da-soja (Glycine max (L.) Merr.), causada por Phakopsora pachyrhizi, de 35 a 62%, em plantas tratadas com óleos essenciais de eucalipto citrodora (Corymbia citrodora Hill & Johnson), tomilho (Thymus vulgaris L.), citronela (Cymbopogon nardus) e nim (Azadirachta indica A. Juss.) sete dias antes da inoculação.

Extractos vegetais também têm sido eficientes no controle de doenças. Como exemplo, o extrato de casca de café, no controle da mancha-da-ploma (Barguil et al., 2005), da cercosporiose (Santos et al., 2007; Amaral, 2005) e da ferrugem-docafeiro (Santos et al., 2007). Além do uso do extrato de ramos de loheira (Solanium lycocarpum St. Hill), infectados por Crinipellis perniciosa (Stahel) Singer, no controle da mancha-bacteriana em tomateiro (Cavalcanti et al., 2006), o extrato de folhas de café severamente afetadas pela ferrugem (Hemileia vastatrix Berk. & Br.), no controle da mancha-de-ploma em cafeeiro (Barguil et al., 2005) e, dos extratos de casca de maracujá (Passiflora edulis Sims), no controle da mancha-de-verticílio em cacau (Pereira et al., 2008).

O objetivo deste trabalho foi avaliar o efeito do extrato de casca de café (ECC), óleo essencial de tomilho (OET) e acibenzolar-S-metil (ASM) na germinação, no crescimento micelial e desenvolvimento de Cercospora coffeicola, em folhas de mudas de cafeeiro, por meio de microscopia eletrônica de varredura (MEV); avaliar a eficiência do ECC, OET e ASM como indutores de resistência no controle da cercosporiose-do-cafeiro e, avaliar a atividade da enzima peroxidase e o acúmulo de lignina em folhas de mudas de cafeeiros.

Material e Métodos

Os experimentos foram realizados no primeiro semestre de 2006, na Universidade Federal de Lavras, Lavras, MG.

Para a obtenção do ECC, 100 g de cascas de frutos de café (pericarpo) foram inicialmente secadas em estufa a 60°C por 48 horas, e moídas e ressuspensas em 500 mL de água destilada, e conduzida a extração a quente por 2 horas, sob refluxo. Em seguida, a suspensão foi filtrada a vácuo e teve seu volume completado para 500 mL com água destilada, adaptado de Barguil et al. (2005). O extrato obtido (ECC 200 g L⁻¹) foi armazenado em freezer a -20°C e utilizado para as demais diluições. O OET foi adquirido da Brasil Portrait (2008).

Para a obtenção do inóculo de C. coffeicola, folhas naturalmente infectadas no campo foram coletadas e submetidas à câmera úmida por três dias. Em seguida, realizou-se a raspagem dos conídios produzidos com pincel de cerdas macias umedecidas em água destilada. A suspensão obtida foi filtrada em gaze e ajustada em hemocitômetro à concentração de 1,5x10⁴ conídios mL⁻¹, concentração essa utilizada em todos os experimentos.

A fim de verificar o efeito do ECC e OET, na germinação de conídios e no crescimento micelial de C. coffeicola, foram realizados dois experimentos in vitro. Os tratamentos consistiram de ECC nas concentrações de 0, 10, 50, 100, 150 e 200 g L⁻¹, OET nas concentrações de 0, 125, 250, 500, 1.000 e 2.000 ppm e, acibenzolar-S-metil (ASM) 0,2 g L⁻¹, utilizado como padrão de indução de resistência.

Para o teste de germinação, foram utilizadas placas de Petri de 6 cm de diâmetro, com meio ágar-água (AA) 2%, no qual foram adicionados 1 mL dos tratamentos, nas concentrações preestabelecidas, e 1 mL da suspensão de conídios. Em seguida, as placas foram acondicionadas em BOD a 25°C, por 24 horas, e fotoperíodo de 12 horas de luz. O experimento foi realizado em delineamento inteiramente casualizado.
com duas placas para cada tratamento, cada uma dividida em quatro quadrantes, tendo sido avaliados 30 conídios por quadrante, num total de oito repetições. Após a incubação, a germinação foi parasida pela adição de duas gotas de solução de lactoglicerol. Em seguida, foi avaliada a percentagem de germinação dos conídios em microscópio de luz.

Para avaliar o crescimento micelial, foram utilizadas placas de Petri de 9 cm de diâmetro com meio BDA 2%. Os tratamentos foram adicionados ao meio antes que este fosse vertido nas placas e após a queda da temperatura para 40°C, de modo que as diluições finais atingissem as preestabelecidas pelo ensaio. Nos tratamentos com OET, foi adicionado propilenoglicol 2% (surfactante) ao meio BDA. No centro de cada placa, foi adicionado um disco de meio com 6 mm de diâmetro com micelio de C. coffeicola. Em seguida, as placas foram acondicionadas em BOD a 25°C e fotoperíodo de 12 horas, tendo permanecido nessa condição até o final das avaliações. O experimento foi realizado em delineamento inteiramente casualizado, com oito repetições e cada parcela constituída por uma placa de Petri. Foram realizadas avaliações a cada quatro dias, desde a inoculação até que o micelio do tratamento testemunha ocupasse toda a superfície do meio. Em seguida, foi calculado o índice de crescimento micelial (ICM), por adaptação da fórmula proposta por Maguire (1962).

As mudas de cafeeiro utilizadas nos experimentos com MEV e na caracterização bioquímica foram obtidas pela semeadura da cultivar Mundo Novo 379/19, em bandejas de isopor (72 células), com substrato comercial Plantmax III. As plantas foram irrigadas diariamente com solução nutritiva de Hoagland & Arnon (1950), até a formação do terceiro par de folhas verdadeiras. Elas foram mantidas em casa de vegetação (25±3°C) durante todo o período experimental.

Para realizar o estudo com a MEV, mudas de cafeeiro foram pulverizadas com ECC 150 g L⁻¹, OET 500 ppm, ASM 0,2 g L⁻¹ e água destilada, até o ponto de escorrimiento, utilizando-se um pulverizador manual. Sete dias depois, quatro folhas do terceiro par de cada tratamento foram coletadas, lavadas em água destilada e acomodadas em bandejas de plástico, previamente desinfetadas e preparadas, conforme Ferreira (2006). Na superfície abaxial de cada folha, foram desenhados quatro círculos de 1 cm de diâmetro. No centro de cada círculo, foram depositados 30 µL da suspensão de conídios de C. coffeicola. As bandejas com as folhas foram cobertas com plástico transparente e mantidas em câmara de crescimento a 24°C e fotoperíodo de 12 horas, até o final do experimento. As coletas das amostras, para observação em MEV, foram realizadas 4, 8, 16 e 48 horas após a inoculação, por meio de cortes circulares (5 mm de diâmetro), feitos com bisturi, dentro de cada círculo previamente demarcado. O preparo e a observação das amostras foram realizados conforme Bossola & Russell (1998).

A fim de avaliar a eficácia do extrato do ECC e do OET, no controle da cercosporiose em plantas de cafeeiro, mudas cultivadas conforme metodologia descrita anteriormente foram transplantadas para vasos de 4 L com substrato composto por terra, arca e esterco bovino (2:1:1) e, mantidas em casa de vegetação (25±3°C) durante todo o período experimental. Plantas com dez pares de folhas foram pulverizadas com: ECC – nas concentrações de 10, 50, 100, 150 e 200 g L⁻¹; OET – nas concentrações de 125, 250, 500, 1.000 e 2.000 ppm; ASM – 0,2 g L⁻¹, e água destilada, até o ponto de escorrimiento, utilizando-se pulverizador manual. Sete dias depois da aplicação, as plantas receberam inóculos via pulverização com uma suspensão de conídios e, em seguida, foram submetidas à câmara úmida por 14 horas. Adotou-se o delineamento de blocos casualizados, com quatro repetições e cada parcela composta por seis plantas. Foram realizadas cinco avaliações a cada 14 dias. Em seguida, calculou-se a área abaixo da curva de progresso do número de lesões da cercosporiose (AACPL), de acordo com Shaner & Finney (1977).

Para determinar a atividade da enzima peroxidase e o acúmulo de lignina nos tecidos do cafeeiro, foram selecionados os tratamentos mais eficientes no controle da doença, em casa de vegetação, e o tratamento-padrão com ASM. Foram avaliados: ECC 150 g L⁻¹; ECC 150 g L⁻¹, seguido de inoculação; OET 500 ppm; OET 500 ppm, seguido de inoculação; ASM 0,2 g L⁻¹; ASM 0,2 g L⁻¹, seguido de inoculação; e testemunha com inoculação. Plantas com três pares de folhas verdadeiras foram pulverizadas até o ponto de escorrimiento e, depois
de sete dias, foram submetidas à inoculação conforme descrito anteriormente. O delineamento foi o de blocos casualizados com três repetições e parcela composta por três plantas.

Todas as folhas das plantas utilizadas para quantificar proteínas totais e a atividade de peroxidase foram coletadas aos 2, 4, 7, 8, 9, 11 e 14 dias após a aplicação dos tratamentos. Por ocasião da última amostragem, foram coletadas folhas para a quantificação de lignina. Imediatamente após cada coleta, as folhas foram congeladas em nitrogênio líquido e, armazenadas a -80°C, até o momento da maceração. Na quantificação de proteínas totais e da atividade da peroxidase, 3 g de folhas das plantas de cada tratamento foram macerados em almofariz onde se adicionou tampão acetato de sódio (cloreto de sódio 0,5 M e ácido cítrico 0,4%) 50 mM, pH 5,2, por três min em banho de gelo. Em seguida, a mistura foi filtrada em pano de trama fina, e a suspensão foi centrífugada a 12.000 g por 20 min, a 4°C. O sobredenadrante foi coletado, ser utilizado como fonte enzimática, e mantido a -80°C até o momento das análises enzimáticas.

As proteínas solúveis contidas nos extratos foram aferidas com base no ensaio de Bradford (1976), com uso de um padrão de albumina sérica bovina (BSA). A atividade da peroxidase foi determinada de acordo com o método de Kar & Mishra (1976), tendo-se utilizado como substrato o guaiacol, na presença de peróxido de hidrogênio. Os resultados da atividade enzimática foram expressos em miligrama de proteína por minuto. A quantificação de lignina foi determinada de acordo com o método de Montes (1989), por meio do ensaio com ácido tioglicólico, e calculada com base em uma curva-padrão, constituída com diferentes concentrações de lignina-padrão (alkali, 2-hidroxipropil éter). Os resultados foram expressos em miligrama de lignina por grama de matéria fresca.

Os dados foram submetidos à análise de variância, e as comparações de médias realizadas pelo teste de Scott-Knott, a 5% de probabilidade, para os fatores qualitativos, e análises de regressão para fatores quantitativos. Os dados de percentagens de germinação foram transformados em arc sin x°.5

Resultados e Discussão

Maior germinação de conídios foi observada nos tratamentos constituídos de ECC, em relação à testemunha (dose 0) (Figura 1 A). A germinação apresentou comportamento quadrático na medida em que as concentrações do extrato se elevaram, com máxima germinação na concentração de 186 g mL⁻¹. O OET reduziu a germinação de conídios de forma linear com o aumento das concentrações (Figura 1 B), com uma DL₅₀ – concentração capaz de inibir a germinação ou provocar a morte de pelo menos 50% dos conídios – estimada em 10.341 ppm.

O ECC e o OET promoveram reduções no índice de crescimento micelial (ICM) (Figura 1 C e D). O ICM apresentou um comportamento linear, com o aumento das concentrações do extrato, e um comportamento quadrático, com o aumento das concentrações do óleo. A DL₅₀ do ECC e do OET foram estimadas em 410 g L⁻¹ e 621 ppm, respectivamente.

Os conídios iniciaram a germinação quatro horas após a inoculação em todos os tratamentos, com exceção do tratamento constituido de OET, no qual a germinação foi pouco evidenciada nas observações ao MEV (Figura 2). Nos tratamentos em que as plantas foram tratadas com ECC, os conídios de C. coffeicola originaram tubos germânticos mais desenvolvidos e em maior número, micélio mais desenvolvido e crescimento micelial superior aos demais tratamentos, 8, 16 e 48 horas após a inoculação, respectivamente. Neste caso, grande quantidade do extrato ainda encontrava-se aderido à superfície foliar. No entanto, nos tratamentos em que as plantas foram tratadas com OET, os conídios do fungo apresentaram baixa germinação, crescimento reduzido e extravasamento celular. O ASM não apresentou qualquer alteração na germinação e no desenvolvimento micelial de C. coffeicola na superfície de folhas de cacau.

Barguil et al. (2005) e Amaral (2005), ao testar o ECC no crescimento micelial de *Phoma costaricensis* e *C. coffeicola*, não observaram efeito tóxico do extrato sobre esses patógenos, no entanto, os autores utilizaram somente a concentração de 100 g L⁻¹, possivelmente insuficiente para a inibição, como observado neste trabalho. Segundo Pandey et al. (2000), a casca de café possui grande quantidade de carboidratos, proteínas, taninos e vários compostos fenólicos, encontrados principalmente na polpa. Possivelmente, a germinação dos conídios foi estimulada pela grande quantidade de açúcares presentes na casca, e o crescimento micelial foi inibido pela presença de taninos, que, segundo Santos & Mello (1999), desempenham importante

Pesq. agropec. bras., Brasília, v.43, n.10, p.1287-1296, out. 2008
papel na inativação de enzimas e impede o crescimento de alguns microrganismos.

Diversos trabalhos relatam o efeito antimicrobiano de óleos essenciais no desenvolvimento in vitro de alguns patógenos. Souza et al. (2004) observaram total inibição do crescimento micelial de Rhizopus sp., Penicillium spp., Eurotium repens e Aspergillus niger, nas concentrações 500, 1.000, 1.500 e 2.000 ppm, respectivamente. Zambonelli et al. (1996) observaram, por meio da MEV, que o óleo de tomilho a 800 ppm diminuiu o crescimento micelial e promoveu a degeneração de hifas e o extravasamento celular de Colletotrichum lindenmathianum e Pythium ultimum. Medice (2007), ao utilizar o mesmo óleo a 3.000 ppm, observou que urediniosporos de P. pachyrhizi encontravam-se muitos e inviáveis para germinação. Segundo Zambonelli et al. (2004), a inibição da germinação de conídios e do crescimento micelial se deve à presença de compostos tóxicos, como timol e carvacrol presentes no óleo, que apresentam propriedades bactericidas e fungicidas (Pinto et al., 2001). É importante observar que os resultados obtidos neste trabalho com o uso da MEV corroboram os resultados observados in vitro. Segundo Kué (2001), geralmente os induitores de resistência no senso estrito não atuam diretamente sobre o patógeno, no entanto, no senso amplo, podem induzir a resistência na planta e também afetar o patógeno diretamente.

Em casa de vegetação, tanto o ECC quanto o OET reduziram a área abaixo da curva de progresso do número de lesões da cercosporiose (AACPL) (Figura 3). Todavia, o ECC proporcionou maior redução. A AACPL, referente aos tratamentos constituídos de ECC, apresentou comportamento quadrático e reduziu a incidência da doença com o aumento das concentrações, com maior redução (35% em relação à testemunha) na concentração de 116 g L-1, a partir da qual constatou-se aumento da incidência da doença (Figura 3 A). De maneira semelhante, a AACPL dos tratamentos constituídos de OET apresentou comportamento quadrático, e os tratamentos reduziram a incidência da doença em 16,1%, em relação à testemunha, na concentração de 1.149 ppm (Figura 3 B). O tratamento-padrão ASM reduziu a AACPL em 36,5%, em relação à testemunha.

Figura 1. Efeito de diferentes concentrações do extrato de casca de café (ECC) e do óleo essencial de tomilho (OET) na germinação de conídios e no índice de crescimento micelial (ICM) de Cercospora caffecoicola. Para análise, os dados de germinação foram transformados em arc sen x⁰.5.

Figura 2. Eletromicrografia de varredura de folhas de cafeeiro submetidas à inoculação (A a D) e 48 horas após inoculação (E a H) de Cercospora coffeicola. A e E: plantas tratadas com acibenzolar-S-metil a 0,2 mg mL⁻¹; B e F: com extrato de casca de café a 150 g L⁻¹; C e G: testemunha somente com inoculação de conídios na fase inicial da germinação (setas); D e H: plantas tratadas com óleo essencial de tomilho a 500 ppm, apresentando germinação reduzida (setas).

Alguns autores já confirmaram o efeito do ECC no controle da cercosporiose. Amaral (2005) e Santos et al. (2007) obtiveram reduções de até 40% na AACPL em mudas de cafeeiro, em casa de vegetação, e 34% em lavoura orgânica no campo, respectivamente. Barguil et al. (2005) observaram que o extrato afetou negativamente o tamanho e o número de lesões de *P. castaniceps*. O controle obtido por meio do extrato possivelmente se deveu aos compostos fenólicos presentes em sua fração solúvel, que, segundo Pascholetti & Leite (1994), podem constituir-se em componentes de defesa da planta contra fatores externos. No caso do óleo de tomilho, o controle de *C. coffeicola* se deu possivelmente pela presença de compostos como timol, cravacrol fenóis, quinonas, sapopininas, flavonóides e terpenóides (Silva Júnior & Vizzotto, 1996).

Com relação à atividade da enzima peroxidase, plantas pulverizadas com ASM apresentaram picos de atividade superiores às plantas do tratamento testemunha 2 e 11 dias após a pulverização (DAP) (Figura 4 A). Plantas tratadas com ASM e com inoculação apresentaram picos de atividade 8 DAP e um pequeno pico 14 DAP, ambos superiores à testemunha com inoculação. Plantas tratadas exclusivamente com ECC apresentaram picos de atividade superiores à testemunha 7 e 11 DAP, e picos inferiores aos das plantas tratadas com ECC e com inoculação aos 11 DAP (Figura 4 B). Esse comportamento é um indicativo de que a inoculação, por si, pode promover aumento na atividade da enzima. Plantas tratadas apenas com OET apresentaram picos de atividade da enzima 2 e 9 DAP, e plantas pulverizadas com o OET e com inoculação apresentaram pico 8 DAP (Figura 4 C). As concentrações de lignina não diferiram entre si pelo teste de Scott-Knott, a 5% de probabilidade. No entanto, plantas tratadas com ASM, ECC e OET apresentaram concentrações de ligninas superiores às do tratamento testemunha (Figura 4 D).

Em relação à atividade da enzima peroxidase e à concentração de lignina, resultados similares foram obtidos por Amaral (2005), que observou picos de atividade da enzima peroxidase 15 DAP, em mudas de cafeeiro tratadas com ASM e 20 DAP, em plantas tratadas com ECC. Cavalcanti et al. (2006) observaram picos dessa enzima em tomateiro tratado com ASM e com inoculação de *Xanthomonas vesicatoria* 9 e 12 DAP. Segundo Mazzaferra et al. (1989), plantas com inoculação geralmente apresentaram picos de atividade de peroxidase superiores às sem inoculação. A relação positiva entre a atividade da peroxidase e a resistência das plantas a doenças tem sido relatada em diversos trabalhos, e o aumento da atividade de peroxidase durante o desenvolvimento da doença tem sido correlacionado à expressão de resistência em diferentes patossistemas (Silva et al., 2007). Santos et al. (2007) observaram concentrações superiores de lignina em plantas tratadas com ECC.

Figura 3. Área abaixo da curva de progresso do número de lesões da cercosporiose (AACPL) 70 dias após a inoculação de *Cercospora coffeicola* em mudas de cafeeiro cultivar Mundo Novo, e tratadas com extrato de casca de café (FCC) e óleo essencial de tomilho (OET).

em campo, 126 DAP. Já Amaral (2005) observou aumento na concentração de lignina 20 DAP, em plantas tratadas com o mesmo extrato, porém elas não diferiram em relação à testemunha. Diferenças nas concentrações de lignina não foram observadas neste trabalho, provavelmente, em razão do intervalo de tempo insuficiente entre o tratamento das mudas e as coletas realizadas, o que também foi observado por Amaral (2005).

Pode-se sugerir que o controle da cercosporiose com OET se deu, principalmente, pelo seu efeito direto sobre o patógeno, e menos pela indução de resistência. Por outro lado, o ECC não apresentou efeito direto sobre o patógeno, mas provocou aumento na atividade da peroxidase. Assim o nível de controle da doença obtido com o uso desse extrato é resultante da indução de resistência em mudas de cafeeiro. Entretanto, para comprovação, as atividades de outras enzimas ligadas à defesa precisam ser determinadas. Postula-se que o controle da cercosporiose do cafeeiro, em mudas no viveiro, é uma das possibilidades mais promissoras de utilização do ECC e do OET.

Conclusões

1. Concentrações crescentes do extrato de casca de café apresentam efeito tóxico in vitro ao crescimento micelial de *Cercospora coffeicola*, porém não inibem a germinação dos conídios.

2. Concentrações crescentes de óleo essencial de tomilho in vitro diminuem a germinação de conídios e o crescimento micelial de *C. coffeicola*.
3. O extrato de casca de café não prejudica os estágios iniciais de desenvolvimento de *C. coffeicola* em folhas de café; diferentemente do óleo essencial de tomilho, que é tóxico aos conídiios e retarda o desenvolvimento micelial.

4. Acibenzolar-S-metil a 0,2 g L⁻¹, extrato de casca de café a 150 g L⁻¹ e óleo essencial de tomilho a 500 ppm conferem proteção parcial em plantas de caféestrella desinfetadas por *C. coffeicola*.

5. Acibenzolar-S-metil, extrato de casca de café e óleo essencial de tomilho elevam a atividade da enzima peroxidase em folhas de café, mas não aumentam a concentração de lignina no tempo avaliado.

Agradecimentos

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior e à Fundação de Amparo à Pesquisa do Estado de Minas Gerais, pelo apoio financeiro.

Referências

Recibido em 3 de maio de 2008 e aprovado em 5 de setembro de 2008.
CAL-083
Estudo histopatológico de Ceratopora coffeicola em folhas de cafeeiros tratados com óleo essencial. Perena RB, Lucas GC, Petena HJ, Alves E. Departamento de Fitopatologia, UFRA, Lavras, MG, Brasil. E-mail: ricardolucas@ufra.br. Histopathology study of Ceratopora coffeicola on coffee leaves treated with essential oil.

O objetivo deste trabalho foi observar o efeito dos óleos essenciais de canela, citronela (0,1%) e testemunha sobre os eventos de pré-penetración, penetração e colonização Ceratopora coffeicola, em folhas de cafeeiro de cultivares Mundo Novo, Caracatu e Catucaí, por meio da microscopia eletrônica de varredura. Plantas foram pulverizadas com os óleos e, após 24h, foram dissecadas e avaliadas. Os óleos mostraram-se eficazes na redução da doença, indicando que os óleos essenciais e seus derivados podem ser utilizados em programas de rotativos de cepas e controlar eficazmente C. coffeicola, assim como o controle de outras pragas e doenças. Apoio financeiro: CNPq.

CAL-084
Óleos essenciais sobre o crescimento micelial de Colletotrichum gloeosporioides de goiaba. Rorwaka LC, Alves E, Camarots RB. Departamento de Fitopatologia, UFRA, Lavras, MG, Brasil. E-mail: lucinororwaka@gmail.com. Essential oils on the mycelial growth of Colletotrichum gloeosporioides from guava fruit.

O objetivo do trabalho foi avaliar a ação de óleos essenciais sobre o crescimento micelial de Colletotrichum gloeosporioides, isolado de goiaba. Aliquatas de 6,67 µL de óleo foram pipetadas em 3 punhos equidistantes sobre papel de filtro em torno de um disco de micelio colocado no centro de placas de Petri (9 cm) com BDA, mantidas a 24ºC e fotoperíodo de 12 horas. No 6º dia, observou-se inibição total do crescimento micelial devido a ação fungicida dos óleos de tomilho (Thymus vulgaris) e cravo do Brasil (Pimpinella anisum), e inibição parcial na presença de minério (Octavia bactrocera) (42%), capim-limão (Cymbopogon citratus) (33%), alecrim (Rosmarinus officinalis) (32%), melaleuca (Melaleuca alternifolia) (32%), alfazema (Lavandula officinalis) (31%), palmitosa (Cymbopogon martius) (28%), gengibre (Zingiber officinale) (21%), camomila (Matricaria recutita) (21%), capim (Eucalyptus globulus) e f. citriodora (14 e 26%), lavanda doce e limão siciliano (Citrus limon e C. limon) (12 e 13%). Ação fungicida e fungitóxica foi observada em 50% das placas de tratamento (Octavia bactrocera), 25% de cravo do Brasil e gengibre, 12% de lavanda de almada e alfazema. Experimentos futuros devem ser realizados com diferentes concentrações de óleos e com diferentes temperaturas e umidades relativas. Apoio financeiro: CNPq.

CAL-085
Manejo alternativo de ódio (Sphaerotheca fuliginea) em abóbora de massa cultivada no norte de Minas Gerais, S/N, NLP, Navegantes CEO, Desbarato ER, Costa CA, Rosinha LMU, Universidade Federal de Minas Gerais, Montes Claros, MG. E-mail: macedoana@uol.com.br. Alternative management of powdery mildew in pumpkins. C. fuliginea grown in the northern Minas Gerais state, Brazil.

Bucato e este estudo determinar a eficiência de métodos alternativos de controle de ódio (Sphaerotheca fuliginea) das principais doenças do abóbora de massa (Cucurbita pepo) região norte de Minas Gerais. Avaliaram-se condição de casa vegetação, a eficiência do leite de vee, vinagre de vinho tinto e urina de leite de vaca no controle do ódio na cultivar caserta. Utilizou-se delineamento em blocos casualizados com cinco tratamentos: leite de vee (10%), vinagre de vinho tinto (30%), urina de leite de vaca (30%), vinagre de cereja (30%) e testemunha (água destilada esterilizada). Iniciaram-se as pulverizações, quando observou a distribuição uniforme do fungo na fase inicial de desenvolvimento das folhas, em todas as plantas. Os tratamentos foram realizados a cada duas, totalizando 4 aplicações, foram feitos 4 avaliaciones, uma antes da aplicação para quantificar a severidade da doença antes e após 14, 21 e 28 dias da pulverização. Concluiu-se que os tratamentos alternativos foram tão eficazes quanto o fungicida, pois, recuperou-se que a preferência seja dada ao primeiro pois o custo reduzido, elimina-se o impacto ambiental do uso de agroquímicos e devido a simplicidade no manejo e aplicação, características ideais para os agricultores familiares da região.

CAL-086
Efeito de óleos essenciais sobre o crescimento micelial de Colletotrichum gloeosporioides isolado do maracujá. Soares JFT, Salles NLM, Martins ER, Aquino CF. Universidade Federal de Minas Gerais, UFMG, Montes Claros, MG, Brasil. E-mail: ronaldo.radas@gmail.com. Effect of essential oils of Collettotrichum gloeosporioides mycelial growth isolated of passion fruit.

Foi avaliado a atividade fungicida das concentrações mínimas (0, 1, 3, 6, 5 e 10,0 µL/mL) de óleo essencial das plantas alface-pimenta (Lippia citriodora), alfazema-cravo (Eugenia corymbifera), capim-santo (Cymbopogon citratus), cedro (Cedrela odorata) e goiaba-vermelha (Passiflora guianensis) sobre o crescimento micelial de C. gloeosporioides isolado do maracujá. As plantas de Petri foram desvernizadas a meio ciclo com os diferentes óleos vegetais de cada planta. Em seguida, as plantas foram inoculadas com BDA, a 25ºC sob fotoperíodo de 12 horas. A avaliação foi realizada através de medições diária da diâmetro do disco até dois dias extratorais, até 14º dias após a inoculação. Nos tratamentos com alfazema-cravo, alface-pimenta, capim-santo, cedro e goiaba-vermelha, as concentrações térmicas reduziram em 100% o crescimento micelial. O óleo de goiaba-vermelha reduziu o crescimento a partir da concentração de 3,0, 5,0 e 10,0 µL/mL, comparando o crescimento micelial em 44%, 67% e 69%, respectivamente, com a testemunha. Os resultados confirmaram que as concentrações mínimas de óleos essenciais reduziram o crescimento micelial de C. gloeosporioides. Apoio financeiro: CNPq.
AQUA-049
Quantificação de Candidatus Liberibacter americanus em vigorão (Catharanthus rossii) com diferentes graus de sintomas.

Paesello CS, Coleta-Filho HD, Locabi-Filho BC, Rosa-Ferreira MA, Alves KCS. Maecheti MAU. Centro APA Citros de Moreira, Condeopésides, SP. Email: carollicarlos18@uol.com. Candidatus Liberibacter americanus quantification in Catharanthus rossii with different levels of symptoms.

CAI-001
Atividade fungicida de óleos essenciais sobre Cercospora coffeicola. Alves E, Peraíra RB, Lucas GC, Perini FI. Departamento de Fitopatologia, UFLA, Lavras, MG, Brasil. Email: eduardo.alves@terra.br. Fungicidal activity of essential oils on Cercospora coffeicola.

Cercospora coffeicola Berk & Cooke é um patógeno importante na cultura do café, capaz de provocar queima de folhas e frutos, além de depreciar a qualidade dos mesmos. Em busca de métodos alternativos de controle desta doença, o objetivo deste trabalho foi avaliar a atividade fungicida de diferentes óleos essenciais sobre o crescimento micelial de C. coffeicola. Os tratamentos constituíram-se de: óleo de tomilho, cravo-da-índia, eucalipto, canela, citronela, árvore de chá, nim e capim limão, na concentração de 100 ppm, testemunha, e leite em pó 1,0%. Os óleos foram adicionados ao meio de cultura BDA autoclavado contendo leite em pó 0,1% (emulsificante nativo). Após homogeneização, os meios foram distribuídos em placas de Petri de 9 cm de diâmetro e, inoculados com disco de micélio de 0,7 cm de diâmetro. O experimento foi realizado em delineamento inteiramente casualizado, com oito repetições. As placas foram mantidas em BOD a 25°C. Avaliaram-se o diâmetro das colônias a cada quatro dias e, calcularam-se os índices de velocidade do crescimento micelial. Os tratamentos constituídos de leite em pó, citronela, árvore de chá e eucalipto não apresentaram efeito fungicida, sem diferir em relação à testemunha, seguidas de capim limão e tomilho. Óleo de nim, canela e canela apresentaram fungicidação, inibindo totalmente o crescimento do patógeno. Apoio Financeiro: FAPEMIG.

CAI-002

Inúmeros fatores têm contribuído na busca de substâncias que possam ser utilizadas para o controle de patógenos. Foi conduzido na Universidade Federal da Grande Dourados um experimento com objetivo de avaliar o efeito in vitro de extratos aquosos sobre o crescimento micelial de Aspergillus spp. O delineamento experimental foi inteiramente casualizado, com 11 tratamentos e 10 repetições. Foram utilizados extratos de alho, arroz, canela, cravo-da-índia, cedro, eucalipto, hortelã, jaborandi, melão de São Caetano e nim, mais a testemunha. Para obtenção dos extratos foram colhidas 20 g de material vegetal e trituradas em 100 ml de água destilada. A solução foi colocada em bomba maria a 55 ºC durante 1 hora, sendo posteriormente filtrada em papel qualitativo n° 1, incorporada em meio BDA e acondicionada em placas de Petri, onde foram transferidos discos de micélio do patógeno, de 3 mm de diâmetro. Realizaram-se medições do crescimento da colônia em dois eixos ortogonais, sendo calculada a média. Os resultados revelaram que o extrato de cravo-da-índia foi superior aos demais, inibindo o crescimento de Aspergillus spp. Alho reduziu significativamente o crescimento micelial em relação aos demais tratamentos. Os extratos de canela e hortelã apresentaram crescimento intermediário. Para os demais extratos foram observados menor crescimento que a testemunha, no entanto, foram todos semelhantes entre si.
ÓLEOS ESSENCIAIS NO CONTROLE DA CERCOSPORIOSE EM MUDAS DE CAFEEIRO CULTIVAR CATUAI*

Fabiano José Perina, bolsista do PIBIC/FAPEMIG, 6º módulo de Agronomia; Eduardo Alves, Orientador – DFP: Gilvaine Ciavareli Lucas, Mestranda – DFP; Ricardo Borges Pereira, Doutorando – DFP. *Financiado pela FAPEMIG

Com a crescente valorização do café orgânico é necessário encontrar métodos alternativos para o controle de fitopatógenos. Dentre as principais doenças da cultura, destaca-se a cercosporíose causada pelo fungo Cercospora coffeicola Berk & Cooke, que ao reproduzir seus sintomas causam severos danos aos produtores. Neste trabalho, avaliou-se a atividade de óleos essenciais no controle da cercosporíose em mudas de cafeeiro cultivar “Catuai”, em casa-de-vegetação. O experimento foi realizado em delineamento de blocos casualizados com três repetições e parcela constituída de dois vasos com três plantas. Foram testados óleos de tomilho (TO), cravo-da-india (CR), eucalipto (EU), canela (CA), citronela (CI), melaleuca (ME), nim (NI) e capim limão (CL) na concentração de 0,1%, adicionados de leite em pó (LP – 1,8%) como emulsificante. Foram adicionadas ainda, uma testemunha recebendo apenas o leite em pó LP, e acibenzolar-S-metil (ASM – 0,2mg/mL). Os tratamentos foram pulverizados em mudas com um ano de idade. Após sete dias, inoculou-se, com suspensão de 1,5 x 10⁴ conídios/mL¹, por pulverização foliar e após 33 dias foram novamente tratadas. Foram feitas cinco avaliações quinzenais de incidência e severidade 20 dias após a inoculação. Observou-se que as mudas tratadas com ASM e os óleos essenciais CA e CI apresentaram as menores áreas abaixo da curva de progresso da incidência. Para a área abaixo da curva de progresso da severidade mudas tratadas com ASM mostraram-se mais eficientes seguidas pelo óleo essencial CA.

Palavras-chave: Cercospora coffeicola; café orgânico; métodos alternativos

ÓLEOS ESSENCIAIS NO CONTROLE DA CERCOSPORIOSE EM MUDAS DE CAFEEIRO CULTIVAR CATUAI*

Fabiano José Perina, bolsista do PIBIC/FAPEMIG, 6º módulo de Agronomia; Eduardo Alves, Orientador – DFP: Ricardo Borges Pereira, Doutorando – DFP; Gilvaine Ciavareli Lucas Mestranda – DFP. *Financiado pela FAPEMIG

A cercosporíose, conhecida por "mancha de olho pardo", causada por Cercospora coffeicola Berk & Cooke, é uma das doenças mais antigas do cafeeiro. Os óleos essenciais podem ser uma boa opção de controle de doenças na agricultura alternativa. O presente trabalho teve como objetivo avaliar o efeito de óleos essenciais no controle da cercosporíose em mudas de cafeeiro cultivar "Catuai", em casa-de-vegetação. O experimento foi realizado em delineamento de blocos casualizados com três repetições e parcela constituída de dois vasos com três plantas. Foram testados óleos de tomilho (TO), cravo-da-india (CR), eucalipto (EU), canela (CA), citronela (CI), árvore de chá (ME), nim (NI) e capim limão (CL) na concentração de 0,1%, adicionados de leite em pó (LP – 1,8%) como emulsificante. Adicionou-se ainda, uma testemunha recebendo apenas o leite em pó LP, e acibenzolar-S-metil (ASM – 0,2mg/mL). Os tratamentos foram aplicados via pulverização, em plantas com um ano de idade. Após sete dias, as plantas foram inoculadas, com suspensão de 1,5 x 10⁴ conídios/mL¹, por pulverização foliar e, 33 dias depois foram novamente tratadas. Vinte dias após a inoculação, foram realizadas cinco avaliações de incidência e severidade a cada 15 dias. Analisando pela área abaixo da curva de progresso da incidência, e da severidade da doença, plantas tratadas com ASM apresentaram os melhores resultados, para os dois aspectos, seguidas das plantas tratadas com o óleo essencial CI.

Palavras-chave: Cercospora coffeicola; doença; agricultura alternativa
A avaliação da produtividade das sementes e de crescimento doito, o estudo do crescimento e desenvolvimento físico e químico da planta têm sido de grande importância para o entendimento da transformação dessa planta em um produto comercialmente viável. www.agronomia.com.br
RESUMO
Óleos essenciais têm sido estudados como substâncias alternativas no controle de doenças, por serem naturais e reduzirem os impactos ao ambiente e ao homem. O objetivo deste trabalho foi avaliar o efeito in vitro de diferentes óleos essenciais na germinação de ureidíiosporos de *Hemileia vastatrix*. Foram testados óleos de canela (CA), cravo-de-índia (CR), citronela (CI), capim-limão (CL), eucalipto (EU), melaleuca (ME), námi (NI) e tomilho (TO), nas concentrações de 0, 250, 500, 1000, 1500, 2000 ppm. O ensaio foi realizado em delineamento inteiramente casualizado, contendo duas placas de Petri de 6 cm por tratamento, divididas em quatro quadrantes, um total de oito repetições. Em cada placa foi adicionado meio AA 2% e 500 µL da suspensão de 6 x 10⁷ ureidíiosporos/mL¹. As placas foram mantidas em BOD a 23°C, sob fotoperíodo de 12h e, a germinação padronizada 24h após, com lactoglicerol. Foram avaliados 30 ureidíiosporos por quadrante em microscópio estereoscópio trinocular (Majji). Todos os óleos inibiram totalmente a germinação de ureidíiosporos nas concentrações de 2000 ppm. Os óleos de TO, ME, CA, CI e CL recuperação na germinação, com DL₅₀ de 316, 327, 333, 415 e 530 ppm, respectivamente, seguidos de CR, NI e EU, com DL₅₀ de 857, 1165 e 1533 ppm, respectivamente.

ABSTRACT
Essential oils have been studied as alternative substances in the control of diseases, because they are natural and to reduce the impacts to the environment and the human. The objective of this work was to assess the effect in vitro of different essential oils on the germination of ureidiospores of *Hemileia vastatrix*. Were tested: cinnamon oil (CA), clove (CR), citronella (CI), lemongrass (CL), eucalyptus (EU), tree rose (ME), neem (NI) and thyme (TO), in the concentration of 0, 250, 500, 1000, 1500, 2000 ppm. The experiment was conducted in full random design, containing two plates of Petri 6 cm for treatment, divided in four quadrants, in a total of eight repetitions. In each plate it was added medium AA 2% and 500 µL of the suspension of 6 x 10⁷ ureidiosporos/mL¹. The plates were maintained in BOD to 23°C in photosynthetic of 12 hours and, the germination paralleled 24 hours after, with lactoglycerol. Were assessed 30 ureidiospores for quadrant in a stereomicroscope (Majji). All of the oils totally inhibited the ureidiospores germination in the concentrations of 2000 ppm. The oils of TO, ME, CA, CI and CL presented reduction in the germination of ureidiospores, with DL₅₀ 316, 327, 333, 415 and 530 ppm, respectively, following by CR, NI and ME, with DL₅₀ 857, 1165 and 1533 ppm, respectively.

Key-words: *Hemileia vastatrix*, alternative control, essential oils.

¹ Deoturando, Depto. de Fitopatologia, Universidade Federal de Lavras. ricardoborgesperete@yahoo.com.br.
² Professor Adjunto, Departamento de Fitopatologia, Universidade Federal de Lavras. alves@ufll.br.
³ Mestrande, Departamento de Fitopatologia, Universidade Federal de Lavras. gilva14@gmail.com.br.
⁴ Graduando, Departamento de Fitopatologia, Universidade Federal de Lavras. perina@gmail.com.
ÓLEOS ESSENCIAIS DE PLANTAS MEDICINAIS NO CONTROLE DA FERRUGEM EM CAFÉEIRO

RICARDO BORGES PEREIRA¹; GILVAINE CIAVARELLI LUCAS²; FABIANO JOSÉ PERINA³; EDUARDO ALVES⁴

RESUMO
O objetivo deste trabalho foi verificar a eficácia de diferentes óleos essenciais no controle da ferrugem do café. Testaram-se os óleos essenciais de tomilho (TO), cravo-da-india (CR), eucalipto (EU), canela (CA), citronela (CI), arvore-do-chá (ME), açafrão (NI) e capim-limão (CL) na concentração de 1000 μL L⁻¹, umbreexol-8-metil (AS) 200 mg L⁻¹ e tebuconazole 200 μL L⁻¹ em três cultivares de café. Como umidificante foi utilizado leite em pó 0,1% (LP) e como controle utilizou-se plantas somente inoculadas. Plantas com um ano de idade foram tratadas duas vezes em intervalos de 30 dias, e inoculadas sete dias após o primeiro tratamento. O experimento foi conduzido em delineamento de blocos casualizados com três repetições e parcela composta por quatro plantas. Foram realizadas cinco avaliações de incidência e severidade da doença, a partir dos 30 dias após a inoculação, em intervalos de 14 dias, e as seguintes foram calculadas as áreas abaixo da curva de progresso da incidência (AACPID) e severidade da doença (AACPSD). Os óleos essenciais de tomilho, cravo e citronela, na concentração de 1000 μL L⁻¹, foram os mais eficientes na redução da AACPID e AACPSD da ferrugem em cafés das cultivares Catuaí 2SL, Catuaí 62 e Mundo Novo 379/19, respectivamente, porém com menor efeito que o fungicida padrão tebuconazole 200 μL L⁻¹.

Palavras-chave: Hemileia vastatrix, Coffea arabica, controle alternativo.

INTRODUÇÃO
A ferrugem, causada por Hemileia vastatrix, é a doença mais destrutiva do café, provocando redução do crescimento das plantas e queda prematura das folhas infectadas (ZAMBOLIM et al., 2005). A doença tem início no campo nos meses de dezembro a janeiro e, atinge o máximo progresso nos meses de junho e julho. Os sintomas da ferrugem iniciam na forma de manchas cloróticas transversais com 1 a 3 mm de diâmetro na face inferior das folhas, que em poucos dias atingem 1 a 2 cm de diâmetro. Na face inferior das folhas desenvolvem-se massas pulverulentas de coloração amarelo-cinza, formadas por uredinóspore do patógeno. Quando colhidas podem cobrir toda a extensão do limão foliar. Na face superior das folhas aparecem áreas de tonalidade amarelada, que correspondem às regiões infectadas na face inferior. Com o tempo, as lesões aumentam de tamanho, deixando no seu centro uma área necrotica, onde a esporulação é reduzida. As condições ideais para o desenvolvimento da doença são: ausência de chuva, temperaturas entre 21 a 25°C e presença de um filme de água sobre as folhas por um período de 3 a 6 horas (ZAMBOLIM et al., 2003; GODOF et al., 1997).

A ferrugem do café é controlada geralmente pela aplicação de fungicidas sistêmicos alternados com fungicidas únicos, em pulverizações sistematizadas durante a estação chuvosa, com intervalos de duas a três semanas, dependendo da severidade da doença. No entanto, seu uso pode selecionar novas raças fisiológicas resistentes ao patógeno (AGRIOS, 2005).

¹ Doutorando, Departamento de Fitopatologia, Universidade Federal de Lavras, ricardoborgespercinato@yahoo.com.br
² Mestrando, Departamento de Fitopatologia, Universidade Federal de Lavras, gilvaine@yahoo.com.br
³ Graduando, Departamento de Fitopatologia, Universidade Federal de Lavras, perina@gmail.com
⁴ Professor Titular, Departamento de Fitopatologia, Universidade Federal de Lavras, edissv@gmail.com
AVALIAÇÃO DE ÓLEOS ESSENCIAIS SOBRE A GERMINAÇÃO DE CERCOSPOIRA COFFEEOLA

R.B. Pereira¹, E. Alves², F.J. Perina¹ e G.C. Lucas¹. Universidade Federal de Lavras. Dep. de Fitopatologia, Caixa Postal 3027, CEP 37200-000 Lavras, MG. E-mail: ricardoborgespereira@yahoo.com.br, calves@ufia.br, perina@ufla.br, gclucas@ufia.br.

As plantas aromáticas têm sido vistas como fontes de substâncias químicas de atividades biológicas inerentes. O aroma que elas exibem pode exercer ação em alguns organismos, ou, ao contrário, toxidez, repelindo-os. Esse princípio torna as plantas aromáticas poderosas fontes de agentes biocidas largamente estudadas na agricultura, por apresentarem atividades bactericida e fungicida. Dentro do contexto da agricultura alternativa, tais compostos poderiam funcionar seletivamente no controle de diversas pragas e doenças agrícolas e inofensivamente ao ambiente. Trabalhos desenvolvidos com óleos essenciais obtidos a partir de plantas medicinais da flora nativa, têm indicado a potencial das mesmas no controle de fitopatógenos, tanto por sua ação fungistática direta, inibindo o crescimento micelial, e a germinação de esporos, quanto pela indução de fitoalexins e outros compostos de defesa, indicando a presença de compostos eficazes. Diante do exposto, o objetivo do presente trabalho foi avaliar o efeito in vitro de diferentes óleos essenciais sobre a germinação de conídiões de Cercospora coffeeola Berk & Cooke, agente causal da cercosporose do cafeeiro. Para a obtenção do inoculo de C. coffeeola, folhas naturalmente infectadas no campo foram coletadas e submetidas à câmera inúndada por três dias. Em seguida realizou-se a raspagem dos conídiios produzidos, com papel de serragem e água destilada. A suspensão obtida foi filtrada em gaze e ajustada em hemocitômetro para a concentração de 1,5 x 10⁴ conídiões ml⁻¹. Foram testados óleos essenciais de tomilho (Thymus vulgaris), cravo-da-índia (Syzygium aromaticum), encalhito (Corymbia citriodora), canela (Cinnamomum zeylanicum), citronela (Cymbopogon nardus), árvore de chá (Vitex agnus-castus), limão (Citrus limon) e capim limão (Citrus limon) na concentração de 0, 250, 500, 1000, 1500 e 2000 ppm. Em todas as testes, os conídiões foram inoculados em plato (LP) 10% como emulsionante natural. Meio agar-saga 2% foram preparados e autoclavados e, após resfriamento dos mesmos para 45 - 50°C foram adicionados os óleos essenciais, de forma que as concentrações finais atingissem as pré-estabelecidas acima. As placas foram colocadas em câmara dióxido de carbono a 25 °C, onde permaneceram por 24 horas. Após 24 horas de inibição, a germinação foi parcializada com solução de destilado em água destilada. Os dados foram estatisticamente processados e validados por teste do qui-quadrado em microscópio ótico de luz. O delineamento foi inteiramente casualizado, com três repetições, sendo cada repetição constituída de quatro quadrantes.

Resultados. O ensaio apresentou boa precisão. Todos os óleos apresentaram efeito tóxico direto aos conídiões de C. coffeeola. A inibição da germinação total dos conídiões foi verificada a partir da dose de 750 ppm para TO, 1000 ppm para o óleo de CA e CL, 1750 ppm para CI e 2000 ppm para CR. Para os demais óleos não foi verificada, nas doses testadas, inibição total da germinação. O tratamento adicional com LP não apresentaram efeito tóxico ao fungo. De acordo com os valores de DL₅₀ (dose de óleo essencial que provoca a inibição da germinação de 50% dos espore, variou) realizados por meio das equações de regressão, os óleos de NI e EU foram os que apresentaram as menores porcentagens de germinação de conídiões de C. coffeeola, com DL₅₀ de 2816 ppm e 2894 ppm, respectivamente. Seguidos de CR, CI, CA, CL e TO com DL₅₀ de 1416 ppm, 937 ppm, 861 ppm, 748 ppm e 832 ppm, respectivamente (Figura 1). Conclusão. Todos os óleos essenciais inibiram a germinação dos conídiões de Cercospora coffeeola, caracterizando um efeito tóxico direto do óleo ao patógeno, apresentando potencial no controle da cercosporose do cafeeiro.

Figura 1. DL₅₀ (dose em que ocorre inibição da germinação em 50% dos conídiões vitais de Cercospora coffeeola), calculada em função da equação de regressão das doses de 0, 250, 500, 1000, 1500 e 2000 ppm. Óleos essenciais de canela (CA), cravo-da-índia (CR), citronela (CI), capim limão (CL), encalhito (EU), árvore de chá (ME), limão (NI) e tomilho (TO). Dados transformados para arco-seno V.
CAL-083
Estudo histopatológico de Cercospora coffeicola em folhas de cafeeiros tratados com óleos essenciais. Pereira RB, Lucas GC, Perina PJJ, Alves E. Departamento de Fitopatologia, UFLA, Lavras, MG. Brasil. E-mail: lavrashere@gmail.com. Histopathology study of Cercospora coffeicola on coffee leaves treated with essential oils.

O objetivo deste trabalho foi observar o efeito dos óleos essenciais de canela, cirtencia (0,1%) e testemunha sobre os eventos de pré-penetração, penetração e colonização Cercospora coffeicola, em folhas de cafeeiro das cultivares Mundo Nova, Catuãí e Caturra, por meio da microscopia eletrônica de varredura. Plantas foram pulverizadas com os óleos e, após 24 horas, foram observados em microscopia eletrônica de varredura. As folhas foram coletadas e, a cada 24 horas, foram avaliadas. Os resultados demonstram que os óleos de canela, citronela e eucalipto apresentaram-se como eficientes em controlar a doença em todas as cultivares avaliadas.

Apêto Financeiro: FAPLIMIG.

CAL-084
Óleos essenciais sobre o crescimento micelial de Colletotrichum gloeosporioides de goiaba. Roswalla LC, Alves E, Camargo RB, Departamento de Fitopatologia, UFLA, Lavras, MG. Brasil. E-mail: luciane.roswalla@gmail.com. Essential oils on the mycelial growth of Colletotrichum gloeosporioides from guava fruit.

O objetivo do trabalho foi avaliar a ação de óleos essenciais sobre o crescimento micelial de Colletotrichum gloeosporioides, isolado de goiaba. Aliquots de 6,67 µL de óleos foram pipetadas em 3 plantas equidistantes sobre papel de filtro em torno de um disco de micelio colocado no centro de placas de Petri (9 cm) com BDA, mantidas à 25 °C e fotoperíodo de 12 horas. Após 6 dias, observou-se inibição total do crescimento micelial devido à ação fungicida dos compostos voláteis dos óleos de tomilho (Thymus vulgaris) e erva doce (Pimpinella anisum) e inibição parcial na presença de manjericão (Ocimum basilicum) (42%), capim-limão (Cymbopogon citratus) (33%), aroeira (Rosmarinus officinalis) (32%), melaleuca (Melaleuca alternifolia) (32%), alfazema (Lavandula officinalis) (31%), palmarosa (Cymbopogon martinii) (28%), gengibre (Zingiber officinale) (21%), camarom (Salvia farinacea) (21%), eucalipto (Eucalyptus globulus e E. citriodora) (14 e 26%), laranja doce e limão siciliano (Citrus sinensis e C. limon) (12 e 13%). Ação fungicida e fungistática foi observada em 50% das placa de atoventor (Ocimum splendidum), 25% de cravo-dalía (Cajetta carthamoides), 75% de menta (Mentha arvensis) e oceano (Origanum vulgare), e nos demais inibição de 86, 80, 92 e 96%, respectivamente. Halos de inibição formaram-se quando ocorreu o contato do patógeno com compostos fixos de alfazema e camarom. Apêto Financeiro: CNpq.

CAL-085
Manejo alternativo de ódio (Sphaerota phaligena) em banho de moita cultivada no norte de Minas Gerais. Silveira NLP, Xavier CCO, Dourado ER, Costa CA, Rocha JMJ, Unifaz, Minas Gerais, Montes Claros, MG. E-mail: rocha@unifaz.br. Alternative management of powdery mildew in pumpkin - Caserta grown in the northern Minas Gerais state, Brazil.

Buscou-se com este estudo determinar a eficiência de métodos alternativos de controle do ódio (Sphaerota phaligena) uma das principais doenças de banho de moita (Caserta vulgaris) na região norte de Minas Gerais. Avaliou-se em condições de casa de vegetação, a eficiência do leite cru de vaca, vinagre de vinho tinto e urina de vaca no controle do ódio na cultivar caserta. Utilizou-se o delineamento em blocos casualizados com cinco tratamentos: leite cru de vaca (10%); vinagre de vinho tinto (30%); urina de vaca (30%); fenaritol (200 µL/L) e a testemunha (água destilada esterilizada). Iniciaram-se as avaliações, quando observada a distribuição uniforme do fungo na face abaxial das folhas, em todas as plantas. Os tratamentos foram realizados a cada 7 dias, totalizando-se 4 aplicações. Foram feitas 4 avaliações, uma antes da aplicação para quantificar a severidade da doença, e outras após 14, 21 e 28 dias da pulverização. Conclui-se que os tratamentos alternativos foram tão eficientes quanto o fungicida, porém, recomendando-se que a preferência seja dada aos primeiros dois, pois o custo reduzido, elimina-se o impacto ambiental do uso de agroquímicos e devido a simplicidade no manejo e aplicação, caracterizam-se como ideais para os agricultores familiares da região.

CAL-086
Efeito de óleos essenciais sobre o crescimento micelial de Colletotrichum gloeosporioides isolado do maracujá. Souza Júnior JF, Sales NLP, Martins ER, Aquino CF. Universidade Federal de Minas Gerais, UFMG, Montes Claros, Brasil. E-mail: nsl@cebraj.ufmg.br. Effect of essential oils of Colletotrichum gloeosporioides mycelial growth isolated of fruit passion.

Foi avaliada a atividade fungicida das concentrações mínimas (0, 1, 2, 3, 5, 10 e 20 µL/mL) de óleo essencial das plantas aroeira-pimenta (Lippia sidoides), alfavaca-cravo (Elettaria grattissima), capim-santo (Cymbopogon citratus), cedro (Lippia citriodora) e goiaba vermelha (Passion fruit) em relação ao crescimento micelial do C. gloeosporioides isolado do maracujá amarelado. Nas plantas de Petri foi adicionado e meio BDA, juntamente com as concentrações dos óleos vegetais de cada planta. Em seguida cada placa foi inoculada no centro, com um disco de micelio de 5 mm de diâmetro. As placas foram incubadas em BOD, a 25 °C sob fotoperíodo de 12 horas. A avaliação foi realizada através de medições diárias da diâmetro do colônia nos dois eixos ortogonais, até o 4º dia após a inoculação. Nos tratamentos com aroeira-pimenta, alfavaca-cravo, capim-santo e cedro, todas as concentrações reduziram em 100% o crescimento micelial. O leite cru de vaca vermelha variou no controle sendo que as concentrações de 1, 2, 5 e 10 µL/mL controlaram a crescimento micelial em 44%, 50%, 67% e 69%, respectivamente com a testemunha. Os resultados confirmaram que as concentrações mínimas dos óleos essenciais testadas inibiram o crescimento micelial do C. gloeosporioides. Apêto Financeiro: FAPEMIG.
CAL-001

Atividade fungitoxica de áoles essenciais sobre Cercospora coffeicola. Alves E, Pereira RB, Lucas GC, Perina FJ. Departamento de Fitopatologia, UFLA, Lavras, MG, Brasil. E-mail: ealves@ufla.br. Fungitoxic activity of essential oils on Cercospora coffeicola.

Cercospora coffeicola Berk & Cooke é um patógeno importante na cultura do café, capaz de provocar queda de folhas e frutos, além de deprezar a qualidade dos mesmos. Em busca de métodos alternativos de controle dessa doença, o objetivo deste trabalho foi avaliar a atividade fungitoxica de diferentes óleos essenciais sobre o crescimento micelial de *C. coffeicola*. Os tratamentos constituíram-se de: óleo de tomilho, cravo-da-índia, eucalipto, canela, citronela, árvore de chá, nim e capim limão, na concentração de 1000ppm, testemunha, e leite em pô 1,0%. Os óleos foram adicionados ao meio de cultura BDA autoclavado contendo leite em pó 0,1% (emulsificante natural). Após homogeneziação, os meios foram distribuídos em placas de Petri de 9 cm de diâmetro e, inoculados com disco de micéio de 0,7 cm de diâmetro. O experimento foi realizado em delineamento inteiramente casualizado, com oito repetições. As placas foram mantidas em BOD a 25°C. Avaliaram-se o diâmetro das colônias a cada quatro dias e, calcularam-se os índices de velocidade do crescimento micelial. Os tratamentos constituíram-se de leite em pó, citronela, árvore de chá e eucalipto não apresentaram efeito fungitóxico, sem diferir em relação à testemunha, seguidos de capim limão e tomilho. Óleo de nim, canela e eucalipto apresentaram fungitoxicidade, inibindo totalmente o crescimento do patógeno. Apoio Financeiro: FAPEMIG.

CAL-002

Inúmeros fatores têm contribuído na busca de substâncias que possam ser utilizadas para o controle de patógenos. Foi conduzido na Universidade Federal da Grande Dourados um experimento com objetivo de avaliar o efeito *in vitro* de extratos acaques sobre o crescimento micelial de *Aspergillus* spp. O delineamento experimental foi inteiramente casualizado, com 11 tratamentos e 10 repetições. Foram utilizados extratos de alho, aroeira, canela, cravo-da-índia, cavalaria, eucalipto, hortelã, jatobá, melão de sao carloto e nim, mais a testemunha. Para obtenção dos extratos foram coletadas 20 g do material vegetal e trituradas em 100 ml de água destilada. A solução foi colocada em banho maria a 55°C durante 1 hora, sendo posteriormente filtrada em papel Whatman nº 1, incorporada em meio BDA e acondicionada em placas de Petri, onde foram transferidos discos de micéio do patógeno, de 3 mm de diâmetro. Realizaram-se medições do crescimento da colônia em dois eixos ortogonais, sendo calculada a média. Os resultados revelaram que o extrato de cravo-da-índia foi superior aos demais, inibindo o crescimento de *Aspergillus* spp. Alho reduziu significativamente o crescimento micelial em relação aos demais tratamentos. Os extratos de canela e hortelã apresentaram crescimento intermediário. Para os demais extratos foram observados menor crescimento que a testemunha, no entanto, foram todos semelhantes entre si.
ÓLEOS ESSENCIAIS NO CONTROLE DA CERCOSPORIOSE EM MUDAS DE CAFFEIRO CULTIVAR CATUAÍ*

Fabiano José Perina, bolsista do PIBIC/FAPEMIG, 6º módulo de Agronomia; Eduardo Alves, Orientador – DFP; Gilvaine Ciavarelli Lucas, Mestranda – DFP; Ricardo Borges Pereira, Doutorando – DFP. *Financiado pela FAPEMIG

Com a crescente valorização do café orgânico é necessário encontrar métodos alternativos para o controle de fitopatógenos. Dentre as principais doenças da cultura, destaca-se a cercosporiose causada pelo fungo *Cercospora coffeicola* Berk & Cooke, que ao reproduzir seus sintomas causam severos danos aos produtores. Neste trabalho, avaliou-se a atividade de óleos essenciais no controle da cercosporiose em mudas de cafeiro cultivar “Catuái”, em casa-de-vegetação. O experimento foi realizado em delineamento de blocos casualizados com três repetições e parcela constituída de dois vasos com três plantas. Foram testados óleos de tomilho (TO), cravo-da-índia (CR), eucalipto (EU), canela (CA), citronela (CI), melaleuca (ME), nim (NI) e capim limão (CL) na concentração de 0,1%, adicionados de leite em pó (LP - 1,8%) como emulsificante. Foram adicionadas ainda, uma testemunha recebendo apenas o leite em pó LP, e acibenzolar-S-metil (ASM - 0,2mg/mL). Os tratamentos foram pulverizados em mudas com um ano de idade. Após 15 dias, inoculou-se, com suspensão de 1,5 x 10⁴ conídios/mL, por pulverização foliar e após 33 dias foram novamente tratadas. Foram feitas cinco avaliações quinzenais de incidência e severidade 20 dias após a inoculação. Observou-se que as mudas tratadas com ASM e os óleos essenciais CA e CI apresentaram as menores áreas abaixo da curva de progresso da incidência para a área abaixo da curva de progresso da severidade mudas tratadas com ASM mostraram-se mais eficientes seguidas pelo óleo essencial CA.

Palavras-chave: *Cercospora coffeicola*; café orgânico; métodos alternativos

ÓLEOS ESSENCIAIS NO CONTROLE DA CERCOSPORIOSE EM MUDAS DE CAFFEIRO CULTIVAR CATUAÍ*

Fabiano José Perina, bolsista do PIBIC/FAPEMIG, 6º módulo de Agronomia; Eduardo Alves, Orientador – DFP; Ricardo Borges Pereira, Doutorando – DFP; Gilvaine Ciavarelli Lucas Mestranda – DFP. *Financiado pela FAPEMIG

A cercosporiose, conhecida por “mancha de olho pardo”, causada por *Cercospora coffeicola* Berk & Cooke, é uma das doenças mais antigas do cafeiro. Os óleos essenciais podem ser uma boa opção de controle de doenças na agricultura alternativa. O presente trabalho teve como objetivo avaliar o efeito de óleos essenciais no controle da cercosporiose em mudas de cafeiro cultivar “Catuái”, em casa-de-vegetação. O experimento foi realizado em delineamento de blocos casualizados com três repetições e parcela constituída de dois vasos com três plantas. Foram testados óleos de tomilho (TO), cravo-da-índia (CR), eucalipto (EU), canela (CA), citronela (CI), árvore de chá (ME), nim (NI) e capim limão (CL) na concentração de 0,1%, adicionados de leite em pó (LP - 1,8%) como emulsificante. Adicionou-se ainda, uma testemunha recebendo apenas o leite em pó LP, e acibenzolar-S-metil (ASM - 0,2mg/mL). Os tratamentos foram aplicados via pulverização, em plantas com um ano de idade. Após 15 dias, as plantas foram inoculadas, com suspensão de 1,5 x 10⁴ conídios/mL, por pulverização foliar e, 33 dias depois foram novamente tratadas. Vinte dias após a inoculação, foram realizadas cinco avaliações de incidência e severidade a cada 15 dias. Analisando pela área abaixo da curva de progresso da incidência, e da severidade da doença, plantas tratadas com ASM apresentaram os melhores resultados, para os dois aspectos, seguidas das plantas tratadas com o óleo essencial CI.

Palavras-chave: *Cercospora coffeicola*; doença; agricultura alternativa
tratamentos foram pulverização das plantas com água, água mais teixe no pô, óleo de azeite 0,5%, óleo de canela 0,1% e acibenzolar-S-metil 0,05 g l-1; todos aos 5 dias antes e 5 dias após a inoculação, empregando-se o esquema de adubação múltipla, com uma suspensão de Xanthomonas axonopodis pv. phaseoli. As avaliações de severidade foram realizadas aos 15, 18 e 21 dias após a inoculação, com escala de notas que variou de 1 a 5. Observou-se que os tratamentos com os óleos essenciais de azeite e canela e acibenzolar-S-metil não diferiram da testemunha na avaliação de severidade da doença aos 15, 18 e 21 dias após a inoculação, apesar de trabalhos experimentais mostrarem a ação do acibenzolar-S-metil no controle do crescimento bacteriano comum do feijoeiro. A área abaixo da curva do progresso dos sintomas também indicou que os tratamentos não diferiram da testemunha.

0541

Determinação de fungos totais em cafeeiros com e sem sintomas da mancha manteigosa

Este trabalho teve como objetivo a determinação de fungos solúveis totais em cafeeiro, cultivar Catucu Vermelho, com e sem sintomas da mancha manteigosa (Colletotrichum gloeosporioides), em lavras com 10 anos de idade. O delineamento experimental usado foi DIC com 3 tratamentos e 8 repetições. Os tratamentos foram: folhas saídas (obtidas de plantas saídas), folhas doces que apresentavam sintomas visíveis (obtidas de plantas docentes) e folhas sem sintomas visíveis (obtidas de plantas docentes). Cada repetição consistiu de uma planta, de onde se coletou 10 folhas do terceiro e o quarto por, em camadas de cor do pô de plântula. A determinação de fungos totais colorimétrica foi baseada no procedimento de Spans e Wrolstad (1990). O teor de fungos solúveis totais foi significativamente maior em folhas de plantas docentes que apresentavam sintomas visíveis, sendo que os demais tratamentos, folhas sem sintomas de plantas docentes e folhas de plantas saídas, mantiveram praticamente os mesmos níveis de fungos totais. O aumento pode estar relacionado com uma tentativa de defesa da planta, em resposta à colonização do patógeno.

0542

**Controle de *Meloiodogyne paraenseis* em cafeeiro com *Pilococyes bilatrus* Cadieli, M.C.; Sant'Anna, D.C.; Paes, V. dos S.; Oliveira, A.D.de; Arêa, G. de O.; Begã, V. L.; Pereira, R. F. G.; Baiça, F.C.; Homenčin, M. Universidade Estadual de Londrina, C.P. 6001, Londrina, PR, CEP 86051-990, neessnhaag@uol.com.br. Controle de Melioiodogyne em coffee crop by *Pilococyes bilatrus*.

Nematóides do gênero *Meloiodogyne* amplamente distribuídos em cafeeiros do Brasil estão invadindo o cultivo no Paraná, especialmente em regiões com solo de textura média. *Pilococyes bilatrus* é fungo utilizado no biocontrole de nematóides e um dos mais estudados a campo. Este trabalho teve como objetivo avaliar a eficiência de isolados de *P. bilatrus*, obtidas na região de Londrina-PR, no controle de *M. paraenseis* em cafeeiro ‘Icaté’, em casa-de-vegetação. Foram testadas 12 tratamentos (10 isolados de *P. bilatrus*, uma testemunha não tratada com *P. bilatrus* e não inoculada com *M. paraenseis* e uma testemunha inoculada com *M. paraenseis*), distribuídos em 10 repetições. Mudas de cafeeiro foram transplantadas para saos de polietileno, contendo solo e areia (1:2) tratados com *P. bilatrus* (50 g/l de arroz colonizado por 10 espôs de arroz). Em seguida, as mudas foram inoculadas com 5000 ovos de *M. paraenseis*. Aos 15 dias do transplanto das mudas, efetuou-se nova aplicação em cobertura dos tratamentos. Aos 90 dias da primeira aplicação do fungo, foram avaliados: altura de plantas; diâmetro do caule; peso de parte aérea e sistema radicular; malformações nas raízes; nêndulos de 1, 2, 4, 7 e 10 nêndulos; sobrevivência dos isolados. Os isolados que melhoram as melhores características para o controle de *M. paraenseis* foram Tae 13, 18 e 22.

0543

**Extrato do resíduo fresco de *A. niger*, agente causal da podridão vermelha do siso, Soares, A.C.F.; Salamão, M.; Candeias, E.L.; Abreu, K.C.L.M. Nucleo de Estudos em Microbiologia Aplicada - NEMA Universidade Federal do Recôncavo da Bahia, 43ABAD. E-mail: acsoares@ufba.br. Fresh and dried *A. niger* residue extract in the control of *A. niger*, causal agent of siso stem red rot.

A produção de siso na região semiárida da Bahia vem declinando devido à ocorrência da podridão vermelha do pseudocaulo, causada por *Aspergillus niger*. Os sintomas característicos são o amarelecimento, murcha e morte da planta. Os produtores utilizam o resíduo obtido no desfecho do siso, para adubação dos plantios de siso. Este trabalho teve como objetivo avaliar o efeito do resíduo de siso fresco e fermentado no campo, na germinação de espores, crescimento micelial e esporulação de *A. niger*, visando o controle da doença. O resíduo foi misturado com água, espremido e penetrado manualmente. O extrato aquoso do resíduo foi utilizado para os testes com *A. niger*, nas concentrações de 0, 25, 50, 75 e 100%. Para a germinação de espores, foram utilizadas lâminas encaveadas, incubadas por 14 dias, em câmara úmida e temperatura ambiente, com 40 µl do extrato e 40 µl de suspensão de espores de *A. niger*. O crescimento micelial e esporulação foram avaliados em meio batata dessecar com extrato aquoso do resíduo adicionado nas concentrações de 0 até 80%. Observou-se que o resíduo fresco induz o aumento na germinação de espores, em 40%, enquanto que o resíduo fermentado em seco, nas concentrações a partir de 40%, inibe a germinação de espores e o crescimento micelial em 100%. Os testes na planta estão em andamento.

0544

A cultura do siso na Bahia ocupa uma área de 223.114 hectares (IBGE, 2004) e se estende por toda a região semi-árida, destacando-se as microrregiões de Serrinha, Bomfim, Jacobina e Serra da Cunha, que juntas perfazem 90% da área plantada no Estado. A podridão vermelha do pseudocaulo do siso, causada por *Aspergillus niger*, tem aumentado significativamente nos últimos 10 anos, resultando em perdas consideráveis para os produtores. A doença provoca descolamento aceleralício do pseudocaulo, com consuntamente amarelamento e morte das folhas e morte das plantas. Visando obter subsídios para o estabelecimento de métodos de controle, está sendo realizado o estudo epidemiológico da podridão vermelha do siso em 17 municípios produtores de siso na microrregião de Serrinha no Estado da Bahia. Foram avaliadas 31 áreas de siso nos 17 municípios envolvidos, registrando-se a presença ou ausência de sintomas em 20 tecerias de siso, escolhidas ao acaso pelo método de caminhada em zigue-zague por área. Foi constatada prevalência de 100% e incidência média variando de 5% a 33% nos municípios estudados, com incidência máxima de 65% e mínima de 3% nos municípios de Araci e Teofilândia, respectivamente.

0545

**Avaliação de óleos essenciais sobre a germinação de *Hemileia vastatrix* Berk & Br. Perera, R.B.; Perera, E.J.; Aloé, E.; Lucas, G.C.; *Departamento de Fitopatologia* – DFF, Universidade Federal de Lavras. E-mail: ricardobergeraperes3@yahoo.com.br. Evaluation of essential oils on the germination of *Hemileia vastatrix* Berk & Br.

Os óleos essenciais usados nas plantas são responsáveis por diferentes odores e aromas. Pesquisas são realizadas continuamente testando variados óleos como fontes alternativas no controle de doenças, por serem de compostos naturais e geralmente menos nocivos ao ambiente. Este trabalho foi realizado com o objetivo de avaliar o efeito de oito óleos essenciais de canola (CA), cravo-da-india (CR), citronela (CI), capim limão (CL), eucalipto (EU), melaleuca (ME), nim (NI) e tomilho (TO), nas concentrações de 0.
RESUMO
Óleos essenciais têm sido estudados como substâncias alternativas no controle de doenças, por serem naturais e reduzirem os impactos ao ambiente e ao homem. O objetivo deste trabalho foi avaliar o efeito in vitro de diferentes óleos essenciais na germinação de uredinísporos de *Hemileia vastatrix*. Foram testados óleos de canela (CA), cravo-da-Índia (CR), citronela (CI), capim limão (CL), eucalipto (EU), melaleuca (ME), ním (NI) e tomilho (TO), nas concentrações de 0, 250, 500, 1000, 1500, 2000ppm. O ensaio foi realizado em delineamento inteiramente casualizado, contendo duas placas de Petri de 6cm por tratamento, divididas em quatro quadrantes, num total de oito repetições. Em cada placa foi adicionado meio AA 2% e 500µL da suspensão de 6 x 10⁴ uredinísporos.mL⁻¹. As placas foram mantidas em BOD a 23°C, sob fotoperíodo de 12h e, a germinação paralisada 24h após, com lactoglicerol. Foram avaliados 50 uredinísporos por quadrante em microscópio estereomicroscópio trinocular (Meiji). Todos os óleos inibiram totalmente a germinação de uredinísporos nas concentrações de 2000ppm. Os óleos de TO, ME, CA, CI e CL reduziram na germinação, com DL₅₀ de 316, 327, 333, 415 e 530ppm, respectivamente, seguindo de CR, NI e EU, com DL₅₀ de 857, 1165 e 1533ppm, respectivamente.

ABSTRACT
Essential oils have been studied as alternative substances in the control of diseases, because they are natural and to reduce the impacts to the environment and the human. The objective of this work was to assess the effect in vitro of different essential oils on the germination of urediniospores of *Hemileia vastatrix*. Were tested cinnamon oil (CA), clove (CR), citronella (CI), lemongrass (CL), eucalyptus (EU), tea tree (ME), neem (NI) and thyme (TO), in the concentration of 0, 250, 500, 1000, 1500, 2000ppm. The experiment was conducted in a completely randomized design, containing two Petri plates of 6cm for treatment, divided in four quadrants, in a total of eight repetitions. In each plate it was added medium AA 2% and 500µL of the suspension of 6 x 10⁴ urediniospores.mL⁻¹. The plates were maintained in BOD at 23°C in photoperiod of 12 hours and, the germination paralyzed 24 hours after, with lactoglycerol. Were assess 50 urediniospores for quadrants in a stereomicroscope (Meiji). All of the oils totally inhibited the urediniospores germination in the concentrations of 2000ppm. The oils of TO, ME, CA, CI and CL presented reduction in the germination of urediniospores, with DL₅₀ 316, 327, 333, 415 and 530ppm, respectively, following by CR, NI and ME, with DL₅₀ 857, 1165 and 1533ppm, respectively.

Key-words: *Hemileia vastatrix*, alternative control, essential oils.

¹ Doutorando, Depar. de Fitopatologia, Universidade Federal de Lavras. ricardoborgespereira@yahoo.com.br.
² Professor Adjunto, Departamento de Fitopatologia, Universidade Federal de Lavras, alves@uflav.br.
³ Mestrando, Departamento de Fitopatologia, Universidade Federal de Lavras, gilvaivareli@yahoo.com.br.
⁴ Graduando, Departamento de Fitopatologia, Universidade Federal de Lavras, perinaf@gmail.com.
RESUMO

O objetivo deste trabalho foi avaliar a eficiência de óleos essenciais no controle da cercosporiose em três cultivares de café (Caucaú, Caúna e Mundo Novo). Foram testados os óleos de tomilho (TL), erviço da índia (CR), eucalipto (EU), camêla (CA), citronela (CD), ângure de chá (ME), uma mistura (M) e camêla (CA) na concentração de 0,1%. Em todos os tratamentos, os tratados com óleos essenciais tiveram redução bruta em pó (LP) 1,87%. A dose final para a eficácia foi 0,2mg.mL-1. Aos 15 dias após inoculação, as plantas foram novamente tratadas. O experimento foi conduzido em delineamento de blocos casualizados. Realizaram-se três avaliações de incidência e severidade e foram calculadas as áreas abaixo da curva de progresso da incidência (AACPID) e severidade da doença (AACPSD). Em média, a cultivar Caucaú, o tratamento AS apresentou menor AACPID e AACPSD, seguido do óleo de CI com redução de 15,4% na incidência e 16,07% na severidade, e no relaço entre a cultivar Mundo Novo, os óleos de CA, M, CI, Cl, TO e LP apresentaram as menores AACPID, com reduções de 14,94; 10,91; 8,89; 7,31; 6,34; 5,80 e 8,18%, respectivamente. E os óleos de CI e CA apresentaram as menores AACPSD, com reduções de 28,69 e 25,09%, respectivamente. Nas mudas de cultivar Caucaú, os óleos de CA e CI juntamente com AS reduziram a AACPSD em 12,98 e 11,26%. ASS reduziram a AACPSD, seguido do óleo de CA com redução de 38,29%, respectivamente em relação à testemunha.

Palavras-chave: Cercospora coffeicola, controle alternativo, óleo essencial de citronela.

ABSTRACT

The objective of this work was to assess the efficiency of essential oils in the control of brown spot in three coffee cultivars (Caucaú, Caúna and Mundo Novo). The tested oils were thyme (TL), clove (CR), eucalyptus (EU), common mugwort (CM), citronella (CD), tea tree (ME), a mixture (M) and lemon grass (CI) at a concentration of 0.1%. In all treatments, the incidence of essential oils was added prepared milk (LP) 1,87%. A dose final for efficacy was 0.2mg.mL-1. The experiment was conducted in a randomized block design. Three assessments of incidence and severity were performed and calculated the areas under the progress curve of the incidence (AACPID) and severity of the disease (AACPSD). In plants of cultivar Caucaú, the treatment AS presented smallest AACPID and AACPSD, followed by the oil of CI with reduction of 15,4% in incidence and 16,07% in severity in comparison to the control treatment. In cultivar Mundo Novo, the oils of CA, M, CI, Cl, TO, I and LP presented smallest AACPID, with reduction of 14,94, 10,91, 8,89, 7,31, 6,34, 5,80 and 8,18%, respectively. And the oils of CI and CA presented smallest AACPSD, with reduction of 28,69 and 25,09%, respectively. Already the plants of cultivar Caucaú, the oils of CA and CI, together with AS...
ÓLEOS ESSENCIAIS DE PLANTAS MEDICINAIS NO CONTROLE DA FERRUGEM EM CAFEÉRIO

RICARDO BORGES PEREIRA¹; GILVAINE CIAVARELI LUCAS²; FABIANO JOSÉ PERINA³; EDUARDO ALVES⁴

RESUMO
O objetivo deste trabalho foi verificar a eficácia de diferentes óleos essenciais no controle da ferrugem do cafeeiro. Testaram-se os óleos essenciais de tomilho (TO), cravo-da-índia (CR), eucalipto (EU), canela (CA), citronela (CL), árvore de chá (ME), ním (NI) e capim limão (CL) na concentração de 1000 µL L⁻¹, acibenzolar-S-metil (AS) 200 mg L⁻¹ e tebuconazole 200 µL L⁻¹ (FU) em três cultivares de cafeeiro. Como emulsificante foi utilizado leite em pó 0,1% (LP) e como controle utilizou-se plantas somente inoculadas. Plantas com um ano de idade foram tratadas duas vezes em intervalo de 30 dias, e inoculadas sete dias após o primeiro tratamento. O experimento foi conduzido em delineamento de blocos casualizados com três repetições e parcela composta por quatro plantas. Foram realizadas cinco avaliações de incidência e severidade da doença, a partir dos 30 dias após a inoculação, em intervalos de 11 dias, e em seguida foram calculadas as áreas abaixo da curva de progresso da incidência (AACPID) e severidade da doença (AACPSD). Os óleos essenciais de tomilho, cravo e citronela, na concentração de 1000 µL L⁻¹, foram as mais eficientes na redução da AACPID e AACPSD da ferrugem em cafeeiro nas cultivares Catucaí 2SL, Catucaí 62 e Mundo Novo 379/19, respectivamente, porém com menor efeito que o fungicida padrão tebuconazole 200 µL L⁻¹.

Palavras-chave: Hemileia vastatrix, Coffea arabica, controle alternativo.

INTRODUÇÃO
A ferrugem, causada por Hemileia vastatrix, é a doença mais destrutiva do cafeeiro, provocando redução do crescimento das plantas e queda prematura das folhas infectadas (ZAMBOLIM et al., 2005). A doença tem início no campo nos meses de dezembro a janeiro e, atinge o máximo progresso nos meses de junho e julho.

Os sintomas de ferrugem iniciam na forma de manchas cloróticas translúcidas com 1 a 3 mm de diâmetro na face inferior das folhas, que em poucos dias atingem 1 a 2 cm de diâmetro. Na face inferior das folhas desenvolvem-se massas pulverulentas de coloração amarelada-alaranjada, formadas por urediníspores do patógeno. Quando coalescem podem cobrir toda a extensão do limbo foliar. Na face superior das folhas aparecem áreas de tonsidade amarelada, que correspondem às regiões infectadas na face inferior. Com o tempo as lesões aumentam de tamanho, deixando no seu centro uma área necrótica, onde a esporulação é reduzida. As condições ideais para o desenvolvimento da doença são: ausência de luz, temperaturas entre 21 a 25°C e, presença de um filme de água sobre as folhas por um período de 3 a 6 horas (ZAMBOLIM et al., 2005; GODOY et al., 1997).

A ferrugem do cafeeiro é controlada geralmente pela aplicação de fungicidas sistêmicos alternados com fungicidas círpicos, em pulverizações sistemáticas durante a estraçao chuvas, com intervalos de duas a três semanas, dependendo da severidade da doença. No entanto, seu uso pode selecionar novas raças fisiológicas resistentes do patógeno (AGRIOS, 2005).

¹ Doutorando, Depto. de Fitopatologia, Universidade Federal de Lavras, ricardoborgespereira@yahoo.com.br
² Mestraucha, Departamento de Fitopatologia, Universidade Federal de Lavras, gilcvarelli@yahoo.com.br
³ Graduando, Departamento de Fitopatologia, Universidade Federal de Lavras, perinas@gmail.com
⁴ Professor Titular, Departamento de Fitopatologia, Universidade Federal de Lavras, edvales@ufla.br
AVALIAÇÃO DE ÓLEOS ESSENCIAIS SOBRE A GERMINAÇÃO DE CERCOSPORA COFFEICOLA

R.B. Pereira¹, E. Alves¹, F.J. Pereira¹ e G.C. Lucas¹.¹ Universidade Federal de Lavras. Dep. de Fitopatologia, Caixa Postal 8037, CEP 37238-000 Lavras, MG. *(E-mail ricipereira@yahoo.com.br; calves@terra.br; permita7@gmail.com.br; gilcacar@terra.com.br)

As plantas aromáticas têm sido vistas como fontes de substâncias químicas de atividades biológicas intensas. O aroma que elas exibem podem exercer atração em alguns organismos, ou ao contrário, toxidez, repelindo-os. Esse princípio torna as plantas aromáticas poderosas fontes de agentes biocidas largamente estudadas na agricultura, por apresentarem atividade bactericida e fungicida. Dentro do contexto da agricultura alternativa, os compostos poderiam funcionar seletivamente no controle de diversas pragas e doenças agrícolas e inofensivo ao ambiente. Trabalhos desenvolvidos com óleos essenciais obtidos a partir de plantas medicinais da flora nativa, têm indicado o potencial das mesmas no controle de fitopatógenos, tanto por sua ação fungicida direta, inibindo o crescimento micelial e a germinação de esporos, quanto pela indução de fitalexins e outros compostos de defesa, indicando a presença de compostos eliciadores. Diante disso, o objetivo do presente trabalho foi avaliar o efeito in vitro de diferentes óleos essenciais sobre a germinação de coníodos de Cercospora coffeicola Berk & Cooke, agente causal da cercosporose do cafeeiro. Para a obtenção do inoculo de C. coffeicola, folhas naturalmente infectadas no campo foram coletadas e submetidas à câmera umida por três dias. Em seguida realizou-se a raspagem dos coníodos produzidos, com pincel de cerdas macias e água destilada. A suspensão obtida foi filtrada em gaze e ajustada em hemocitômetro para a concentração de 1,5 x 10⁵ coníodos mL⁻¹. Foram testados óleos essenciais de tomilho (Thymus vulgaris), cravo-da-india (Neygium aromaticum), eucalipto (Corymbia citriodora), canela (Cinnamomum zeylanicum), citronela (Cymbopogon nardus), árvore de chá (Melaleuca alternifolia), nym (Azadirachta indica) e capim limão (Cymbopogon citratus) na concentração de 0, 250, 500, 1000, 1500, 2000 ppm. Em todos os tratamentos foi adicionado leite em pó (LP) 1,0% como emulsificante natural. Meio ágar-agua 2% foram preparados e autoclavados e, após refrigeração dos mesmos para 45 - 50ºC, foram adicionados os óleos essenciais, de forma que as concentrações finais atingissem as pre-estabelecidas acima, exceto na testemunha onde será utilizada somente água destilada. Após homogeneização do meio, verteu-se 10 ml do meio em cada placa de Petri de 6 cm de diâmetro. Após o refrigeração de todos os meios, placas foram rascadas, dividindo-as em quatro quadrantes. Em seguida foram depositados 500µl da suspensão de coníodos de C. coffeicola os quais foram espalhados com alicha de Drigalsky sobre a superfície das placas. As placas foram acondicionadas em BOD a 25 ± 1ºC, onde permaneceram sobre fotoperíodo de 12 horas. Após 24 horas de incubação, a germinação foi paralisada com solução de bactefricol e, alevados 25 coníodos por quadrante em microscópio ótico de luz. O delineamento foi inteiramente casualizado, com oito repetições, sendo cada repetição constituída de um quadrante de cada placa.

Resultados: O ensaio apresentou boa precisão. Todos os óleos apresentaram efeito tóxico direto aos coníodos de C. coffeicola. A inibição da germinação total dos coníodos foi verificada a partir da dose de 750ppm para TO, 1000ppm para o áleo de CA e CL e 1750ppm para CI e 2000ppm para CR. Para os demais óleos não foi verificada, nas doses testadas, inibição total da germinação. O tratamento adicional com LP não apresentou efeito tóxico ao fungo. De acordo com os cálculos da DL₅₀ (dose de óleo essencial que provoca a inibição da germinação de 50% dos coníodos viáveis) realizados por meio das equações de regressão, os óleos de NI e EU foram os que apresentaram as menores porcentagens de germinação de coníodos de C. coffeicola, com DL₅₀ de 2816ppm e 2804ppm, respectivamente, seguidos de ME, CR, CI, CA, CL e TO, com DL₅₀ de 1416ppm, 937ppm, 561ppm, 348ppm e 303ppm, respectivamente (Figura 1). Conclusão: Todos os óleos essenciais inibiram a germinação dos coníodos de Cercospora coffeicola, caracterizando um efeito tóxico direto do óleo ao patógeno, apresentando potencial no controle da cercosporose do cafeeiro.

Figura 1. DL₅₀ (dose em que ocorre inibição da germinação ou morte de 50% dos coníodos viáveis de Cercospora coffeicola), calculada em função da equação de regressão das doses de 0, 250, 500, 1000, 1500 e 2000ppm. Óleos essenciais de canela (CA), cravo-da-india (CR), citronela (CL), capim limão (CL), eucalipto (EU), árvore de chá (ME), nim (NI) e tomilho (TO). Dados transformados para arcoseno x².
RESUMO DA TESE

A ferrugem e a cercosporiose são consideradas as principais doenças do cafeeiro, pois reduzem a produção e prejudicam a qualidade da bebida. O manejo da doença é realizado, convencionalmente, pela aplicação de cuáricos e fungicidas sistémicos, no entanto, eles podem promover a contaminação do homem e do ambiente e selecionar raças resistentes dos patógenos. Assim, os óleos essenciais surgem como uma alternativa para o controle da ferrugem e a cercosporiose do cafeeiro. Diante do exposto, os objetivos deste trabalho foram: (i) avaliar o efeito in vitro dos óleos essenciais de canela (CA), citronela (CL), capim-limão (CL), cravo-da-índia (CR), árvore-de-chá (ME), tomilho (TO), ním (NI) e eucalipto (EU) na germinação de urediniósporos de Hemileia vastatrix e de conídios de Cercospora coffeicola; (ii) avaliar o efeito destes no crescimento micelial de C. coffeicola; (iii) avaliar o efeito dos óleos essenciais no controle da ferrugem e cercosporiose em diferentes cultivares de cafeeiro em casa de vegetação; (iv) avaliar a proteção sistémica dos óleos essenciais mais promissores nas diferentes cultivares e seus efeitos no controle da ferrugem e da cercosporiose e (v) avaliar in vivo os efeitos destes sobre a germinação de conídios e o desenvolvimento micelial de C. coffeicola, por meio da microscopia eletrônica de varredura (MEV). Todos os óleos essenciais promoveram a inibição da germinação dos urediniósporos de H. vastatrix e dos conídios de C. coffeicola, com o aumento das concentrações. Os óleos essenciais de CR, CA, NI, TO e CI inibiram o crescimento micelial de C. coffeicola na concentração 1.000 μL L⁻¹. Os óleos essenciais promoveram controle parcial das doenças em casa de vegetação, sendo os óleos de TO, CR e CI os mais promissores para o controle da ferrugem nas cultivares Catucaí 2SL, Catuai IAC 62 e Mundo Novo 379/19, e os óleos de CA e CI, para o controle da cercosporiose em todas as cultivares. O óleo essencial de CR apresentou efeito local, enquanto o óleo de CI apresentou efeito sistêmico contra a ferrugem do cafeeiro. Os óleos essenciais de CA e CI promoveram proteção sistêmica nas cultivares Catucaí 2SL e Catuai IAC 62 contra a cercosporiose. Os óleos essenciais de CA e CI reduziram a germinação e o desenvolvimento micelial de C. coffeicola in vivo, promovendo o extravasamento do citoplasma celular.

*Comitê de Orientação: Eduardo Alves – UFLA (Orientador); Mário Lúcio Vilela de Resende – UFLA (Co-orientador) e Mário Sobral de Abreu – UFLA (Co-orientador).