Relatório Técnico Final

Título: Isolamento e caracterização de genes associados à determinação de castas e sexo em *Melipona sp.*

Projeto: CBB 2685/97

Instituição Executora: Universidade Federal de Uberlândia,
Instituto de Genética e Bioquímica,
Laboratório de Genética Molecular

Coordenador: Prof. Dr. Luiz Ricardo Goulart Filho

Equipe:
- Prof. Dr. Warwick Estevam Kerr - UFU
- Profa. Dra. Ana Maria Bonetti - UFU
- Prof. Dr. Malcon Antônio Manfredi Brandeburgo - UFU
- Prof. MSc. Waldesse Piragé de Oliveira Jr. - UFU
- MSc. Maria Alice Moreira Silveira Machado - UFU
- MSc. Rosana de Cássia Oliveira – Doutoranda em Genética – FMRP/USP
- Juliana Côbo – Mestranda em Genética e Bioquímica - UFU
- Flávia Assumpção Santana – Mestranda em Genética e Bioquímica - UFU
- Carlos Ueira Vieira – graduando em Biologia - UFU

Vigência: Início: 01/10/2000 Término: 30/10/2002

Uberlândia – MG
Janeiro - 2003
Sumário Geral

<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumo</td>
<td>03</td>
</tr>
<tr>
<td>Dados Gerais</td>
<td>04</td>
</tr>
<tr>
<td>Principais Objetivos do Projeto</td>
<td>04</td>
</tr>
<tr>
<td>Principais Etapas Executadas com Vistas ao Atendimento dos Objetivos</td>
<td>05</td>
</tr>
<tr>
<td>Objetivos Alcançados</td>
<td>05</td>
</tr>
<tr>
<td>Apresentação e discussão sucinta dos principais resultados obtidos em decorrência do desenvolvimento do projeto</td>
<td>05</td>
</tr>
<tr>
<td>Recursos Humanos Envolvidos</td>
<td>06</td>
</tr>
<tr>
<td>Publicações</td>
<td>06</td>
</tr>
<tr>
<td>Intercâmbios</td>
<td>07</td>
</tr>
<tr>
<td>Parcerias</td>
<td>07</td>
</tr>
<tr>
<td>Outras Formas de Apoio</td>
<td>07</td>
</tr>
<tr>
<td>Fatores Positivos e Negativos</td>
<td>08</td>
</tr>
<tr>
<td>Anexos</td>
<td>08</td>
</tr>
<tr>
<td>Differential Display não Radioativo como Alternativa na Identificação Molecular de Polimorfismos Relacionados à Expressão Gênica</td>
<td>09</td>
</tr>
<tr>
<td>Efeitos do Hormônio Juvenil III na Expressão Gênica de Melipona scutellaris (Hymenotera, Apidae, Meliponini)</td>
<td>13</td>
</tr>
<tr>
<td>Análise da Expressão Gênica em Apis mellifera quanto à Divisão do Trabalho na Colméia por DDRT-PCR</td>
<td>24</td>
</tr>
<tr>
<td>Expressão gênica diferencial em Melipona scutellaris (Hymenoptera, Apidae)</td>
<td>57</td>
</tr>
</tbody>
</table>
Resumo Geral

O objetivo desse trabalho foi detectar, pela técnica de Differential Display Reverse Transcriptase – Polymerase Chain Reaction (DDRT-PCR), genes associados à determinação de castas. Conhecendo o efeito do Hormônio Juvenil na formação de rainhas em certos estágios do desenvolvimento, aplicou-se o Hormônio Juvenil (JH) III no estágio tardio de larva 3 (L3) de Melipona scutellaris para se estudar seus efeitos na expressão gênica. Nas fases que abrangem L3 e larva pré-defecante (LPD) há uma janela temporal de expressão dos genes feminizantes, durante a qual eles podem ser ligados ou desligados por ação do HJ, o qual é capaz de promover a diferenciação das larvas fêmeas, em rainhas. A combinação dos primers HT11A-AP4 revelou uma expressão diferencial no indivíduo tratado com HJ III, com fracas expressões do transcrito, após 1 hora de tratamento do indivíduo, enquanto que no Controle e indivíduos com 4 horas de tratamento, a expressão foi mais forte. As combinações dos primers HT11G-AP4 e HT11G-AP5 revelaram, em cada uma dessas combinações, a supressão de um produto gênico na larva após 1 hora de tratamento com HJ III em relação ao expresso nos indivíduos de mesma idade não tratados e no indivíduo com quatro horas após o tratamento. Foi observado, também, expressão diferencial de transcritos durante o desenvolvimento ontogenético. Esses resultados demonstram que o HJ III suprime ou altera o perfil de expressão gênica durante a fase de L3 de Melipona scutellaris. Alguns transcritos diferencialmente expressos foram identificados, clonados e sequenciados. As sequências não foram informativas e os genes inteiros devem ser clonados e devidamente anotados frente ao banco de dados mundial. Uma seqüência de 333 pb foi seqüenciada associada com rainhas, mas não teve homologia com seqüências do GenBank, tendo apenas os primeiros 52 nucleotídeos um alinhamento significante com diversos genes de espécies variadas. Novos experimentos (sequenciamentos, northerns e RT-PCR semiquantitativos) estão tendo continuação para determinar novas seqüências de diversos clones, que após anotadas deverão sofrer novos ensaios com análises quantitativas e qualitativas dos genes específicos nas fases de desenvolvimento.
1 – Dados Gerais

Nome do coordenador do Projeto: Prof. Dr. Luiz Ricardo Goulart Filho

No. Processo – Instituição – Unidade/departamento – Linha de Pesquisa
- CBB 2586/97 – UFU/MG – Instituto de Genética e Bioquímica – Genética Molecular Animal

Título do Projeto:
- Análise da expressão gênica diferencial em Melipona scutellaris quanto à determinação de castas.

Grupo de pesquisa cadastrado no Diretório do CNPq: Genética Molecular Humana e Animal/Universidade Federal de Uberlândia
- Luiz Ricardo Goulart Filho

Valor financiado: R$ 24.000,00 (Vinte quatro mil reais)

Valor executado: R$ 24.000,00 (Vinte quatro mil reais) – relatório enviado.

Bolsas envolvidas
- Bolsista Mestrado CNPq (Waldesse Piragé de Oliveira Filho)
- Bolsista Mestrado CAPES (Maria Alice Moreira Silveira Machado)
- Bolsa de Mestrado CAPES (Flávia Assumpção Santana)
- Bolsista PET (Carlos Ueira Vieira)
- Bolsista CNPq (Juliana Côbo)

2 – Principais Objetivos do Projeto

2.1 – Geral
- Desenvolver um perfil eletroforético de sequências expressas (ESTs) por meio da técnica DDRT-PCR (differential display-PCR), com a finalidade de isolar e clonar prováveis genes envolvidos no desenvolvimento e na determinação de castas em Melipona scutellaris.

2.2 – Específicos
- Desenvolver a tecnologia DDRT-PCR com a coloração de prata para amostras de abelhas sem ferrão;
- Desenvolver perfis de ESTs para abelhas (Apis mellifera) para a divisão de trabalho em uma colméia;
- Determinar o efeito do Hormônio Juvenil (HJ) na expressão gênica de M. scutellaris durante a formação de castas.
3 – Principais etapas executadas com vistas ao atendimento dos objetivos em termos técnicos científicos

- Otimizou-se a manipulação de amostras para a extração eficiente de RNAs e para a manutenção de sua viabilidade;
- Foi desenvolvida a DDRT-PCR pela coloração de prata com sucesso;
- Desenvolveu-se vários protocolos para a clonagem de bandas a partir de gêis de poliacrilamida, tanto por raspagem da banda quanto pela retirada e maceração completa da mesma;
- Vários experimentos em diversas fases de desenvolvimento, combinações variadas de primers, implantação de diversas colônias de abelhas, observações de comportamento, e aplicações de HJIII em tempos variados foram executados até a obtenção de padrões aceitáveis de amplificação dos RNAs extraídos.

4 – Objetivos alcançados

- Praticamente quase todos os objetivos propostos foram concluídos com sucesso; contudo, grande parte dos genes clonados ainda não foi sequenciada e anotada. Desta maneira, não se tem uma conclusão precisa se os genes clonados realmente têm uma participação na formação de castas de abelhas sem ferrão.

5 – Apresentação e discussão sucinta dos principais resultados obtidos em decorrência do desenvolvimento do projeto

5.1 – Avanço teórico (aspectos relevantes técnicos–científicos)

- Este projeto permitiu grande avanço na experiência com a manipulação do RNA e das tecnologias envolvidas com esta molécula, como: clonagem a partir de bandas tanto por raspagem como por retirada completa da banda do gel de poliacrilamida, análise quantitativa da expressão gênica, DDRT-PCR com detecção pela prata, entre outras.

5.2 – Avanço/Inovação experimental

O maior avanço foi identificar alguns padrões de expressão diferencial em diversos aspectos, tanto em nível de desenvolvimento ontogenético, como pela divisão de trabalho (comportamento), divisão de castas, e sob o efeito do hormônio juvenil III. Algumas bandas foram clonadas, sequenciadas e anotadas quanto à possível função. Alguns destes genes não apresentaram homologia com sequência depositadas no GenBank. Assim, não foi possível ainda identificar o genes associados à determinação de castas, mas várias sequências diferencialmente expressas ainda estão sendo sequenciadas, mesmo após o término do projeto.

É importante enfatizar que a determinação de castas pode ser induzida artificialmente pela aplicação tópica de Hormônio Juvenil nos estágios L3 e
7.3 – Teses e Monografias

8 – Intercâmbios:

9 – Parcerias:

- Dr. Wilson Araújo da Silva Jr., Hemocentro, Faculdade de Medicina de Ribeirão Preto, USP.

10 – Outras formas de apoio ao projeto

- Bolsas de doutorado e PET - CAPES.
- Complementação de recursos financeiros PROAP-CAPES (R$ 3.500,00).
11 – Principais fatores positivos ou negativos que interferiram na execução do projeto.

Positivos:
- A otimização do trabalho laboratorial com RNA foi um grande fator positivo tanto para este projeto quanto para outros. Por ser uma molécula facilmente degradada e muito difícil de trabalhar, a investigação requereu muito cuidado e condições especiais, que vão desde a adaptação de equipamentos, preparo de reagentes, processos de extração até a detecção. Assim, o laboratório adquiriu grande experiência na manipulação do RNA e das tecnologias envolvidas, como: clonagem a partir de bandas, análise quantitativa da expressão gênica, entre outras.

Negativos:
- A demora na otimização da extração, manipulação e manutenção da viabilidade da molécula de RNA.
- A dificuldade em achar combinações de primers randômicos informativos para a PCR e dos iniciadores apropriados para a reação da transcriptase reversa.
- A dificuldade em realizar clonagens a partir das bandas de RNA display, que foi sanada com diversas otimizações

12 – Anexos

O projeto permitiu o desenvolvimento de 4 trabalhos que estão listados a seguir na forma de 4 capítulos:

- **Differential Display não Radioativo como Alternativa na Identificação Molecular de Polimorfismos Relacionados à Expressão Gênica**
- **Efeitos do Hormônio Juvenil III na Expressão Gênica de Melipona scutellaris (Hymenoptera, Apidae, Meliponini).**
- **Análise da Expressão Gênica em Apis mellifera quanto à Divisão do Trabalho na Colméia por DDRT-PCR**
- **Expressão gênica diferencial em Melipona scutellaris (Hymenoptera, Apidae)**
DIFFERENTIAL DISPLAY NÃO RADIOATIVO COMO ALTERNATIVA NA IDENTIFICAÇÃO MOLECULAR DE POLIMORFISMOS RELACIONADOS À EXPRESSÃO GÊNICA

RESUMO

A técnica Differential Display (DD), descrita primeiramente em 1992, promoveu um grande avanço nos estudos de expressão gênica em eucariotos, permitindo análises comparativas, isolamento e caracterização de novos genes relacionados aos mais variados processos biológicos. A larga aplicação do DD se deve, principalmente, ao fato de ser uma técnica rápida, fácil e de necessitar de pequena quantidade de RNA total. Entretanto, o uso de radioisótopos em uma determinada etapa do DD restringe esse método a laboratórios que tenham áreas específicas para manipular esses reagentes e o torna inviável a grande maioria dos centros de pesquisa existentes no país. Assim, esse trabalho busca adaptar a coloração por nitrato de prata, não radioativa, à técnica do DD; utilizando como modelo biológico a espécie Apis mellifera (abelha africanizada). Os resultados têm sido promissores e mostram que a coloração por nitrato de prata é eficiente no DD e pode tornar a técnica mais difundida nos laboratórios nacionais.

UNITERMOS: DDRT-PCR, Expressão gênica, Differential Display.

Os organismos superiores contêm cerca de 100.000 genes diferentes, dos quais somente uma pequena fração, cerca de 10.000 a 15.000, são expressos em qualquer célula. Isso é que determina os processos da vida: desenvolvimento; homeostase; resposta a estímulos; regulação celular; idade, etc. (Manniiatis et al., 1987). Entretanto, encontrar meios de identificar e isolar esses genes que estão expressos diferencialmente é muito complicado. De acordo com Liang et al. (1995) alguns critérios são importantes em uma metodologia que vise caracterizar a expressão gênica: (1) visualizar a maioria dos 15.000 mRNAs numa célula; (2) ter alta reproducibilidade; (3) permitir a comparação de mRNA de diferentes fontes; (4) gerar informações úteis para identificar e isolar os genes correspondentes, mRNA ou cDNAs, tornando-a uma técnica mais potente que as análises de proteínas em gel, onde há dificuldade em obter proteína suficiente para a caracterização molecular e (5) ser rápida e fácil. A técnica "Differential Display", descrita por Liang e Pardee (1992), Liang et al. (1992, 1993) e posteriormente nomeada DDRT-PCR por Bauer et al., 1993, atende tais critérios. Esse método permite identificar genes, em duas ou mais situações e, também, recuperar e clonar o seu DNA. A estratégia do método consiste de três passos básicos e dois opcionais.
(Warthoe et al. 1995): 1- transcrição reversa usando um grupo de "primers" 3' ancorados T_{11}N (N= A, C, ou G) que se aneiam na porção 3' do mRNA (cauda de poli(A)); 2- amplificação das espécies de cDNA de cada fração, usando um grupo de "primers" 5' arbitrários (20 a 26 diferentes) e "primers" 3' ancorados; 3- separação por eletroforese dos fragmentos resultantes; 4- reamplificação dos mesmos, clonagem e sequenciamento; 5- confirmação da expressão diferencial por uma técnica de análise de RNA (Northern ou slot blotting.).

Centenas de trabalhos utilizando a técnica do DDRT-PCR foram e estão sendo realizados em diversos organismos, e mostram que a técnica tem se tornado cada vez mais eficaz e, com certeza, a mais utilizada no momento para isolar e caracterizar genes diferencialmente expressos. Isso se deve à sua simplicidade, sensibilidade e baixa necessidade de RNA (Liang et al., 1992; Bauer et al., 1993; Zimmermann e Schultz, 1994; Xinkang et al., 1995). A partir de todos esses conhecimentos nosso trabalho visou otimizar a técnica; no que se refere à análise da expressão gênica diferencial na divisão de trabalho de Aphis mellifera, com enfoque na utilização da marcação não radioativa por nitrato de prata. Primeiramente, deve ser realizada a extração de RNA total. Em seguida, realiza-se a síntese de cDNA por transcrição reversa na presença de: RNA total; transcriptase reversa MMLV-RT; deoxinucleotídios trifosfatos (dNTPs); "primer" poli T; Inibidor de Rnase, tampão 5X (Tris-Cl 250 mM, pH 8.3, KCl 375 mM, MgCl₂ 15 mM) e água até um volume final. Após a síntese do cDNA deve ocorrer a amplificação do mesmo via PCR, onde são definidas combinações de "primers" curtos de 10 pb de sequências arbitrárias e ricos em G e C (50 a 60%) e "primers" poli T. Em cada reação de amplificação são utilizados dNTPs (dATP, dCTP, dGTP e dTTP), "primer" ancorado T_{11}N, Taq DNA Polimerase, "primer" arbitrário de 10 pb, tampão 10 X (Tris-Cl 100 mM, KCl 500 mM, MgCl₂ 1,5 mM), cDNA e água. Após a amplificação, os produtos são separados por eletroforese em gel de poliacrilamida (19:1–Acrilamida:Bis) 6%, não desnaturante. O gel é então corado de acordo com BLUM et al. (1987) e BASSAM et al. (1991), onde: o DNA é fixado ao gel com ácido acético 10%, corado por em solução composta de nitrato de prata, formaldeído e água. Depois de corado, o gel é revelado em solução gelada composta de carbonato de sódio, formaldeído, tiosulfato de sódio e água. Os fragmentos evidenciados com o uso de nitrato de prata, no geral, são entre 100 a 900 pb. Os fragmentos menores ou maiores que esse intervalo não apresentam padrão qualificado para análise. DOSS (1996) apresentou várias vantagens em se usar a prata: custo inferior aos radioisótopos; simplicidade e praticidade; resolução de fragmentos maiores que os detectados por {sup 32}P. Entretanto, apesar dos testes com {sup 35}S não fornecerem resultados conclusivos, constatamos que muitas outras bandas, não utilizadas na análise, aparecem fracamente quando se utiliza a prata, o que reforça a idéia de novos testes para melhorar ainda mais essa técnica. Por isso, e a partir das diferenças encontradas na expressão gênica da divisão de trabalho de Aphis, novos estudos serão realizados para isolar, clonar e sequenciar os fragmentos polimórficos detectados. O DDRT-PCR associado à marcação por nitrato de prata mostra-se eficaz em detectar, com facilidade, fragmentos de cDNA que correspondem a mRNAs altamente expressados e, consequentemente, com maior quantidade de produto amplificado. Assim, a técnica DDRT-PCR, associada a coloração por nitrato de prata, pode ser uma técnica aplicável em estudos com abelhas e outros organismos, podendo ser utilizada como um
método alternativo ao uso de radioisótopos. O DDRT-PCR é uma técnica rápida e confiável, entretanto, sua otimização requer atenção a alguns detalhes. Os "primers" oligo d(T) têm que ser otimizados individualmente, pois foi mostrado que o uso desse material que não as mesmas condições de reação para "primers" ancorados não servem para "primers" degenerados. A utilização desses tipos de "primers" é amplamente discutida na literatura, então, recomenda-se que sejam selecionados e otimizados de acordo com o material biológico utilizado. O uso do nitato de prata permitiu a visualização e otimização das condições ideais para a realização do DDRT-PCR em Apis. A coloração prata é prática e fácil de utilizar, além de ser mais barata e menos perigosa que os radioisótopos. Para se ter sucesso com a marcação por prata, são necessários uma boa amplificação e reagentes de qualidade. Outra ressalva ao desenvolvimento do DDRT-PCR, é que atualmente são encontrados no mercado vários "kits" que podem agilizar o trabalho. Entretanto, a otimização, a busca e a descoberta de novas alternativas é que dêem melhor o conhecimento, bem como auxiliam a entender mais claramente as técnicas da Biologia Molecular. Assim, a técnica do DDRT-PCR pode ser agilizada, mas deve ser adaptada a cada espécie em estudo.

REFERÊNCIAS BIBLIOGRÁFICAS

laboratorial manual. DIEFFENBACH, C. W.; DVESKLER, G. S. Cold Spring Harbor Laboratory Press, New York, EUA.
EFEITOS DO HORMÔNIO JUVENIL III NA EXPRESSÃO GÊNICA DE *Melipona scutellaris* (HYMENOPTERA, APIDAE, MELIPONINI)

1. INTRODUÇÃO

1.1. Abelha sem ferrão

As abelhas sem ferrão pertencem à superfamília Apoidea que se subdivide em 8 famílias: Colletidae, Andrenidae, Oxaeidae, Halictidae, Melittidae, Megachilidae, Anthophoridae e Apidae.

Os Apidae subdividem-se em quatro subfamílias: Apinae, Meliponinae, Bombinae e Euglossinae. Em Meliponinae estão descritos 52 géneros com mais de 300 espécies, espalhadas em todo o mundo. Os povos pré-colombianos já conheciam as abelhas sem ferrão e as domesticaram, dando-lhes nomes que ainda hoje persistem na cultura popular brasileira como, jataí, uruçu, tiúba, mombuca, irapuá, tataira, jandaíra, guarupu, manduri.

As abelhas são parte integrante do ecossistema da região em que vivem. Sua principal função na natureza é a polinização das flores e, consequentemente, produção de sementes e frutos. As abelhas brasileiras sem ferrão são responsáveis por 40 a 90% da polinização das árvores nativas; as restantes são polinizadas por abelhas solitárias, borboletas, coleópteros, morcego, aves, alguns mamíferos, água, vento e pelas abelhas africanizadas (KERR et al., 1996).

Para a implantação de um Meliponário, local onde são mantidas as colméias de melipónideos, devem ser considerados vários fatores importantes tais como: local onde haja flora, água, sol e sombreamento em proporção adequada e, principalmente, considerar o número de colméias ali colocadas o que é importante para que não se perca a variabilidade genética devido ao endocruzamento, com conseqüente, morte das colônias. Esse número corresponde ao mínimo de 44 colônias de uma mesma espécie, em um mesmo local. Esse número de colônias foi determinado em função do sistema de determinação do sexo e de acasalamento dos Meliponíneos (YOKOYAMA e NEI, 1979).

A abelha sem ferrão, popularmente conhecida como Uruçu do Nordeste, que se constitui no objeto de estudo para as informações desse trabalho, pertence à espécie *Melipona scutellaris*, e tem-se mostrado em excelente material biológico para análises genéticas devido ao seu mecanismo peculiar de determinação de castas por fatores genético-alimentares, o que difere do padrão apresentado por outros Apidae.

Considerando-se que estas abelhas estão intrinsecamente ligadas à polinização de espécies vegetais que compõem a diversidade da flora brasileira, torna-se importante conhecer sua biologia e os mecanismos genéticos envolvidos no seu desenvolvimento para contribuir com a sua preservação e conseqüente preservação da biodiversidade.
1.2. Hormônio Juvenil

Um dos hormônios envolvidos no processo de metamorfose de insetos é o Hormônio Juvenil (HJ) sintetizado pelas glândulas endócrinas corpora allata (CA) e secretado na hemolinfa, o qual promove, de alguma maneira, a interação dos CA com o genoma, provavelmente, via receptor nuclear da superfamília dos esteróides (DAVEY, 2000).

Em 1974, KERR propôs um modelo para explicar, em Melipona, a segregação de 75 operárias para 25 rainhas em cada 100 nascimentos. Dois genes principais X\(^a\) e X\(^b\), com dois alelos cada um, seriam os responsáveis por produtos feminizantes, de modo que larvas duplo heterozigotas, quando bem alimentadas, desenvolvem-se em rainhas e larvas mal alimentadas ou homozigotadas para esses genes, tornam-se operárias, em consequência de baixa produção de HJ.

A aplicação tópica de Hormônio Juvenil em larvas de Melipona que estão em fase de tecelagem de casulo (larvas pré-defecantes) e, mesmo, no estágio de L3 tardio, confirma a influência desse hormônio na produção de rainhas a partir de larvas de operárias, pelo desencadeamento de mecanismos genéticos que promovem a diferenciação dessas larvas em fêmeas completas, rainhas (BONETTI, 1982). A anatomia externa de ovários de rainha de Melipona quadrifasciata induzida por tratamento com HJ é idêntica a de rainha natural (BONETTI, 1984). Glândulas tergais de rainhas induzidas por tratamento com HJ mostram, também, padrão de distribuição idêntico ao de rainha natural (BONETTI et al., 1994).

Os efeitos dos Hormônios Juvenil I, II e III foram estudados por BONETTI et al (1995) que determinaram a dosagem mínima suficiente para a produção de rainhas a partir de larvas de operárias de Melipona. O HJ I demonstrou ser o mais eficiente na produção de rainhas em Melipona, seguido do HJ III.

Para SILVA (1999) o HJ III na dosagem de 0,5\(\mu\)g/\(\mu\)l foi capaz de induzir a produção de até 100% de rainhas em Melipona scutellaris, quando aplicado tópicamente em larvas pré-defecantes (LPD).

1.3. Differential Display Reverse Transcriptase – Polymerase Chain Reaction (DDRT-PCR)

O material genético de um indivíduo é igual em todas as suas células, mas se expressa de forma diferente em cada tipo celular. A técnica de Differential Display Reverse Transcriptase – Polymerase Chain Reaction (DDRT-PCR) desenvolvida por LIANG e PARDEE (1992) permite a detecção de genes diferencialmente expressos em células, tecidos e organismos, por meio de um perfil de mRNA.

A técnica consiste na transcrição reversa do RNA mensageiro (mRNA), em cDNA (DNA complementar obtido a partir do RNA) por meio de um primer oligo-dT que se liga à cauda poli-(A) do mRNA, selecionando um tipo específico de mRNA.

identificar mRNAs diferencialmente expressos em fígado hemocromático e fígado normal, em humanos.

Desde a sua publicação, inúmeros trabalhos têm apresentado propostas de otimização da técnica (MOU et al. 1994; GUIMARÃES et al. 1995; DOSS, 1996; BONNET et al. 1998).
2. Objetivo
Este trabalho teve por objetivo investigar por meio da técnica de DDRT-PCR, o perfil de mRNA de *Melipona scutellaris* após aplicação tópica de HJ III em larva, buscando identificar genes cujo padrão de expressão mostram influência do Hormônio Juvenil.

3. Material e Métodos

3.1 Material Biológico e Tratamento com HJ III
Colméias de *Melipona scutellaris* são mantidas no Meliponário Uberlândia, Uberlândia-MG, Brasil (S 180 55’ / W 480 17’).
Larvas no estágio L3 tarcio foram tratadas topicalmente e isoladamente com 1 µl de HJ III, dissolvido em acetona P.A. (MERCK) na dosagem de 0,5 µg/µl. As larvas foram mantidas em estufa a 31ºC, com umidade relativa de 80%, obtida por meio de solução saturada de KCl em dessecador (ASTM 1951). Larvas controle, sem tratamento e tratadas apenas com acetona P.A. (MERCK) foram identicamente manipuladas. Após uma e quatro horas do tratamento, foram coletadas larvas Tratadas e Controle e congeladas em ultrafreezer a −80ºC até o momento da extração do RNA.

3.2 Extração de RNA
A extração de RNA total das larvas foi feita pelo método do TRIzol (GIBCO) segundo recomendações do fabricante. A larva foi macerada em 1 ml de trizol para cada 100mg de tecido, agitado em vortex e incubado por 5 minutos a 30ºC. Foram adicionados 0,2 ml de clorofórmio para cada ml de trizol, agitando-se por 15 segundos e incubando-se a 30ºC por 2 minutos, seguido de centrifugação a 12000 g por 15 minutos a 4ºC. A fase aquosa foi transferida para tubo de eppendorf ao qual foram adicionados 500 µl de isopropanol para cada ml de trizol e incubado a temperatura ambiente por 10 minutos, centrifugando-se a 12000 g por 10 minutos, a 4ºC. O pellet foi lavado com etanol 75 % (1 ml de etanol para cada ml de trizol) e centrifugado a 7500 g por 5 minutos a 4ºC. Depois de secagem ao ar, o material foi ressuspensado em 70µl de H₂O/DEPC.

3.3 Remoção do DNA cromossomai
Para remoção do DNA cromossomai, 10 µg de RNA foram incubados por 15 min a temperatura ambiente com 10 U de DNAsel I, 10 U de RNAsin, tampão 1X completando-se para um volume final de 20 µl com H₂O/DEPC. Após adição de 1 µl de EDTA 25 mM, incubou-se por 10 min a 65ºC e em seguida em gelo. Foi feita a extração fenólica para remoção da DNAsel I. O volume foi completado para 200 µl com H₂O/DEPC. Foram adicionados 200 µl de clorofórmio (25 fenol: 24 clorofórmio: 1 álcool isoomilico) agitado em vortex por 1 min e misturado manualmente por 5 min. Foi centrifugado a 14.000 g por 5 min. A fase aquosa foi transferida para outro eppendorf com 200 µl de clorofil (24 ml clorofórmio: 1 ml álcool isoomilico). Agitado em vortex por 1 min e misturado, manualmente, por mais 5 min. Centrifugou-se a 14.000g por
5 min. A fase aquosa foi transferida para outro eppendorf ao qual se adicionou 20 μl de acetato de sódio a 3M (pH 5,2) e 400 μl de etanol 100% gelado, incubado-se a -20°C overnight. Centrifugou-se a 14.000g por 30 min a 4°C. O sobrenadante foi removido e foram adicionados 600 μl de etanol 70%, gelado. Centrifugou-se a 14.000g por 15 min a 4°C. Depois de secagem ao ar foi ressuspensioem 20μl de H2O/DEPC. O RNA foi quantificado a 260nm e verificou-se sua integridade em gel de agarose 1%.

3.4 Transcrição Reversa
Na reação de transcrição reversa foram utilizados 200ng de RNA total, 8 pmoles de primer oligo-dT com uma base âncora (Tabela 1), 33 U de RNAsin, Tampão 1 X, 10mM de DDT, 200mM de dNTPs. Após incubação a 42°C por 3 min foram acrescentados 200U (1μl) de RT SUPERSCRIPT II (GIBCO) e, novamente, o material foi incubado a 42°C por 50 min, seguido por 15 min a 75°C. Foram feitos controles negativos sem a adição de transcriptase reversa para verificar a ocorrência de amplificações inespecíficas, oriundas de DNA contaminante.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequência 5'</th>
<th>3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poli A*</td>
<td>AAGCTTTTTTTTTTA</td>
<td></td>
</tr>
<tr>
<td>Poli G*</td>
<td>AAGCTTTTTTTTITTG</td>
<td></td>
</tr>
<tr>
<td>AP4 +</td>
<td>AAGCTTCTCAACG</td>
<td></td>
</tr>
<tr>
<td>AP5 +</td>
<td>AAGCTTAGTAGGC</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 1: Seqüência dos primers utilizados na transcrição reversa e na amplificação por PCR.
*Primer para transcrição reversa
*Primer arbitrários, para reações de amplificação.

3.5 Amplificação dos cDNAs, eletroforese em gel de poliacrilamaida desnaturante e coloração do gel
Os cDNAs obtidos foram amplificados em reação de PCR em termociclador MJ RESEARCH PTC 100 utilizando-se 1 μl da reação de transcrição reversa, 50 μM de cada dNTP, 1 U Taq DNA polimerase (GIBCO), tampão 1X, 2,5 mM de MgCl2, 8 pmoles dos primers utilizados na transcrição reversa (HT11A ou HT11G) e 8 pmoles de primers arbitrários, AP4 ou AP5 (Tabela 1) para o volume final de 20μl, com a seguinte programação: 40 ciclos de 94°C por 25 s, 40°C por 2 min, 72°C por 1 min, seguidos de 72°C por 5 min e 4°C por tempo indeterminado.
A eletroforese dos produtos amplificados foi processada em gel de poliacrilamida 6%, uréia 8M, a 120 V por 18 h. A visualização das bandas foi feita por coloração com nitrato de prata de acordo com BLUM et al. (1987), com modificações de BASAM et al. (1991).
4. Resultados e Discussão

O RNA extraído pelo método TRIzol foi tratado com DNase I para remoção de DNA genômico, que poderia contaminar a reação produzindo falsas bandas no gel e levando à interpretação inadequada dos dados. Sabe-se que a DNase I é umaendonuclease que hidrolisa, preferencialmente, cadeias simples ou duplas de DNA nos sítios adjacentes aos nucleotídios pirimidínicos (SAM BROOK, 1989). Após o tratamento, a integridade do RNA foi analisada em gel de agarose 1%. Os RNAs mostraram-se integro para a transcrição reversa (Figura 1).

![Figura 1: Perfis do RNA de Melipona scutellaris obtido pelo método trizol, em gel de agarose 1% corado com brometo de etídio, depois da remoção do DNA contaminante pela digestão com DNase I. 1- L3 após 1 h de tratamento com HJ III 2- Controle (após 1 hora do tratamento com HJ III) 3- L3 após 4 h de tratamento com HJ III 4- Controle (após 4 horas do tratamento com HJ III)](image)

A transcrição reversa do mRNA foi obtida com a enzima SUPERSCRIPT RT II (GIBCO) e um primer oligo-dT. Somente o mRNA sofre transcrição reversa porque possui uma cauda poli-A onde o primer oligo-dT se anela, selecionando-o. Foram feitas triplicatas das reações de transcrição e um branco para cada amostra, a reação com RNA sem a presença da SUPERSCRIPT. Caso apareçam bandas nessas amostras, significa que o RNA está contaminado com DNA. Foi feito, ainda, um branco geral que consiste em uma reação onde se colocam todos os reagentes com exceção do RNA. Com essa reação é verificado se os reagentes estão contaminados.

Os produtos das transcrições foram amplificados por reação de PCR, utilizando-se primer oligo-dT e um primer aleatório. A combinação dos primers HT11A e AP4 revelou expressão diferencial de intensidade, com fraca expressão do transcrito no indivíduo submetido à uma hora de tratamento com HJ III, enquanto que nos indivíduos Controle e tratados por 4 horas, a expressão foi mais intensa (Figura 2).
Figura 2: Produtos de DDRT-PCR (combinação HT11A e AP4) em gel de poliacrilamida 6% uréia 8M, corado com nitrato de prata. B: branco (sem RNA). B1, B2, B3 e B4: controles negativos (sem RT). T1: Larva 3 após 1h de Tratamento com HJ III; C1: Controle /1h; T 2: Larva 3 após 4 horas de Tratamento com HJ III; C 2: Controle/4h. As setas (→) indicam o polimorfismo de intensidade.

A combinação HT11G-AP5 revelou a supressão de um produto gênico na larva após 1 hora de tratamento com HJ III, em relação Controle. Após 4 h de tratamento esse produto estava com mesma expressão do Controle de 1 h (Figuras 3).

Figura 3: Produtos de DDRT-PCR (combinação HT11A e AP4) em gel de poliacrilamida 6% uréia 8M, corado com nitrato de prata. B: branco (sem RNA). B1, B2, B3 e B4: controles negativos (sem RT). T1: Larva 3 após 1h de Tratamento com HJ ; C1: Controle /1h; T 2: Larva 3 após 4 horas de Tratamento com HJ III; C 2: Controle /4h. As setas (→) indicam a posição do transcrito no indivíduo após 1h de tratamento com HJ III (T 1) em comparação ao controle (C 1).

A combinação HT11G-AP4 revelou expressão gênica diferencial durante o desenvolvimento larval, com forte expressão das bandas 2 e 3 em larva Tratada (T1) e Controle (C 1) de 1 h comparado com Tratado (T 2) e
Controle (C 2) de 4 h. Em adição, essa combinação, também, revelou a supressão de um produto gênico no indivíduo após 1 hora de tratamento com HJ III (Figura 4).

Figura 4: Produtos de DDRT-PCR (combinação HT11A e AP4) em gel de poliacrilamida 6% uréia 8M, corado com nitrato de prata. B: branco (sem RNA). B1, B2, B3 e B4: controles negativos (sem RT). T1: Larva 3 após 1h de Tratamento com HJ III; C1: Controle /1h; T 2: Larva 3 após 4 horas de Tratamento com HJ III; C 2: Controle /4h. As setas (→) indicam o transcripto no controle e a posição correspondente nos indivíduos tratados. As setas (→) indicam expressão diferencial de intensidade durante o desenvolvimento larval, nos indivíduos tratados e controle.

Em nossa análise verificamos que, a aplicação tópica de HJ III em larvas de Melipona scutellaris, no estágio de L3 tardio, provocou alterações no perfil de mRNA, com supressão de um transcrito gênico após 1 hora de tratamento da larva. Verificou-se, ainda, que o HJ foi capaz de atuar, suprimindo a expressão gênica em larvas com 1 hora de desenvolvimento enquanto que em larvas de 4 horas, esse hormônio não mostrou qualquer influência (Figuras 3 e 4). BONETTI (1990) verificou supressão de Esterases específicas de adulto, em indivíduos de Melipona quadrifasciata com 8 dias de idade, tratados com HJ I no estágio de larva. Seus resultados mostram, ainda, algumas regiões de atividade esterásicas com menor
intensidade de expressão em indivíduo submetido a tratamento com HJ I. JONES et al. (1996) também observaram a supressão de proteínas de armazenamento, durante o desenvolvimento larval de *Trichoplusia ni*, após a aplicação tópica de análogo do HJ. COMAS et al. (1999) mostraram que em *Blatella germanica* cardioalatectomizada e tratada com HJ III, os níveis de mRNA de vitelogenina se eleva após 2 horas do tratamento, demonstrando o efeito gonadotrópico desse hormônio. VERMUNT et al. (1999) verificaram aumento da expressão do gene de Hormônio Juvenil Esterase (HJE) em larvas do besouro *Leptinotarsa decemlineata* e supressão de sua expressão em adultos, após a aplicação de análogo do HJ. KRÄMER et al. (2002), verificaram a inibição da expressão de alguns genes, em análise por DDRT-PCR em pupa de *Galleria*, em indivíduos tratados com HJ, durante metamorfose.

Alterações desse tipo, provocadas pelo HJ ou seus análogos, tem sido verificadas, ainda, por De KORT et al. (1997) em *Leptinotarsa decemlineata* e por HEPPERLE & HARTFELDER (2001) em *Apis mellifera*.

Expressão gênica diferencial foi observada, também, durante em indivíduos com 1 e 4 h de desenvolvimento (Figura 4, bandas 2 e 3). Esses genes provavelmente são ligados ou desligados em resposta à manipulação devido ao estresse ambiental.

A identificação e sequenciamento de genes que são ativados ou desligados durante o desenvolvimento ontogenético são metas a serem atingidas para esclarecimento dos mecanismos moleculares que regem o desenvolvimento em direção à diferenciação.

5. Conclusões

1 – As combinações dos primes HT11-AP4, HT11G-AP5 e HT11G-AP4, foram adequadas para detecção da expressão gênica diferencial durante o desenvolvimento e em indivíduos não tratados e tratados com HJ III.

2-Durante o desenvolvimento ontogenético, somente indivíduos com 1 h de tratamento sofreram influência do HJ III. Indivíduos tratados com HJ III, após 1 hora de tratamento, mostraram expressão diferencial de intensidade do transcrito e/ou supressão da expressão de alguns genes.

3- Os genes que sofreram influência do HJ III, com supressão ou intensidade de expressão, tiveram retorno aos níveis normais de expressão nos indivíduos com 4 h de tratamento.

6. Referências Bibliográficas

Análise da Expressão Gênica em *Apis mellifera* quanto à Divisão do Trabalho na Colméia por DDRT-PCR

1 - INTRODUÇÃO

1.1. Apidae

A classe Insecta representa o grupo de seres vivos dominantes na Terra, apresentando um número de indivíduos maior que a soma de todos os outros animais existentes no planeta e ocorrendo em quase todos os ambientes. Dentro dessa classe, a superfamília Apoidea, com 9 famílias, destaca-se por apresentar espécies com comportamentos sociais de diferentes níveis e por suas múltiplas relações com plantas e animais (OLIVEIRA, 1996).

As abelhas são encontradas em vários ambientes, exceto nos lugares onde as temperaturas são extremas, como no deserto do Saara e nas geleiras dos Pólos Sul e Norte. A grande concentração de espécies está entre os trópicos (WINSTON, 1992). Os Apidae estão subdivididos em quatro sub-famílias: abelhas com comportamento eusocial como as melíferas (Apinae) e as sem ferrão (Meliponinae); as primitivas *Bombus* sociais (Bombinae) e as que apresentam comportamento parasocial ou solitário (Euglossinae) (KERR, 1969; MICHENER, 1990).

1.2. A *Apis mellifera*

Dentro do grupo dos Apinae, recebem maior destaque as abelhas *Apis mellifera*, por sua grande capacidade de adaptação (RIBBANDS, 1953; WINSTON, 1992), além de sua alta produtividade de mel e pôlen que são importantes economicamente para o homem.

As abelhas *Apis mellifera* existem na Terra há cerca de 100 milhões de anos, surgindo junto com as primeiras plantas e insetos (PURVES et al., 1995). Sua importância para a sociedade humana começou a ser definida em 2.400 a.C., com o início da Apicultura no antigo Egito.

Em 1839 essas abelhas chegaram ao Brasil. Algumas sub-espécies europeias foram trazidas para o Rio de Janeiro, pelos jesuítas, a pedido do imperador Dom Pedro II. Várias regiões do país, principalmente São Paulo e Rio Grande do Sul, receberam abelhas do gênero *Apis* e essas foram sendo instaladas em outros locais, de acordo com o interesse dos imigrantes (WIESE, 1995).

Já a popularmente conhecida abelha africana, chegou ao país trazida pelo Prof. Dr. Warwick Estevam Kerr, em 1956, a mando do governo brasileiro, para fins de melhoramento, com o objetivo de obter linhagens que alissem sua boa produtividade à mansidão das melhores linhagens italianas. A sua instalação foi no Rio Claro-SP onde, devido a um acidente em 1957, algumas abelhas rainhas conseguiram escapar (KERR, 1967; PARDO, 1979). Graças a esse fato, a abelha africana ocupou toda a América do Sul e, também, grande parte da América do Norte (WINSTON, 1992). Essa ocupação aconteceu devido à grande capacidade de adaptação e à maior eficiência reprodutiva das espécies de abelhas africanas (STORT e GONÇALVES, 1979; RINDERER et al., 1993).
Dessa forma, surgiu a abelha “brasileira”, chamada de africanizada, pois é fruto do cruzamento das abelhas africanas, principalmente *Apis mellifera scutellata*, com as abelhas européias já existentes no país. Essa abelha africanizada, ao longo dos anos, se mostrou excelente produtora o que motivou sua utilização na apicultura (PARDO, 1979).

1.3. A divisão de trabalho em *Apis mellifera*

A colônia de *Apis* é uma das realizações mais notáveis da evolução. As rainhas de *Apis*, apresentam morfologia e fisiologia desenvolvidas para reprodução; todas as outras tarefas dentro e fora da colmeia são realizadas por operárias morfologicamente diferentes da rainha. Muitos observadores registraram as atividades dessas operárias, de diferentes idades, e verificaram que os indivíduos não desenvolviam tarefas particulares, mas que cada um realizava uma variedade de tarefas, sendo que a tarefa desempenhada tende a mudar à medida que ele se torna mais velho (FREE, 1980).

Segundo ZUCCHI (1973), a divisão de trabalho dentro das castas foi o que permitiu o aumento populacional da colônia, por torná-la independente das variações na quantidade de alimento disponível na natureza, graças à sua capacidade de armazenamento. A divisão de tarefas é fundamental para a organização das sociedades de insetos e constitui-se num dos principais fatores para o seu sucesso ecológico (WILSON, 1984). Essa divisão é caracterizada por dois fatores: (1) diferentes atividades são realizadas simultaneamente por (2) grupos de indivíduos especializados, sendo isso mais eficiente do que essas tarefas fossem feitas por indivíduos não especializados (JEANNE, 1986).

Um estudo pioneiro foi realizado por RÖSCH, em 1925, utilizando uma colônia de observação com 6 quadros, nos quais as abelhas podiam realizar todas as atividades, exceto construir favos. Ele acreditava que cada abelha desempenhava todas as tarefas dentro da colmeia numa determinada sequência. A partir desse trabalho, postulou-se que as operárias de *Apis* nos primeiros três dias de vida adulta dedicavam-se à limpeza do corpo e dos alvéolos. Após isso, a sequência de tarefas divide-se em: alimentação de cria (3 a 11 dias de idade); recepção de néctar das forrageiras (8 a 14 dias); limpeza da colônia (10 a 23 dias); construção do favo (2 a 52 dias) e vôos de reconhecimento fora da colmeia (5 a 15 dias). RÖSCH admitiu que havia certa flexibilidade no desempenho dessas tarefas, podendo abelhas de mesma idade alternarem suas funções.

Acreditava-se que todas as operárias herdavam a mesma programação quanto à sequência das atividades e que a flexibilidade era dada pela variação na duração das respostas às condições da colmeia (COSTA-LEONARDO e CRUZ-LANDIN, 1985).

Segundo LINDAUER (1953), há flexibilidade na distribuição de trabalhos por faixa etária e que a sequência de tarefas dentro do quadro da divisão de trabalho entre as operárias é válida para um grupo, mas pode mostrar falhas quando analisada em um único indivíduo. Já foi verificado que um indivíduo pode mostrar superposição de tarefas num mesmo dia (SAKAGAMI 1953, *in* COSTA-LEONARDO e CRUZ-LANDIN, 1985). Outros autores estudaram o assunto (RIBBANDS, 1953; MICHENER, 1974) e
reafirmaram a flexibilidade na distribuição das tarefas por faixa etária, contradizendo também as idéias de RÖSCH.

A plasticidade na divisão de trabalho é uma característica chave no sucesso da colônia, contribuindo para o desenvolvimento e crescimento adequado da população (ROBINSON, 1992).

Baseado nos vários estudos (RÖSCH, 1925; RIBBANDS, 1953; SAKAGAMI, 1953), FREE (1980) estabeleceu um padrão de comportamento quanto à divisão de trabalho em Apis mellifera, onde as abelhas empreenderem quatro séries superpostas de atividades como segue: limpeza de célula; alimentação de larvas e construção de favos; recepção de néctar, acondicionamento de pólen, limpeza de células, remoção de entulhos e guarda; e coleta (FREE, 1980). Os sistemas glandulares das abelhas, que estão associados à produção de alimento larval e de cera, desenvolvem-se e regridem de acordo com as mudanças na sua preferência pelas várias tarefas dentro do ninho.

BROWSERS (1982) realizou estudos in vitro para verificar a atividade das glândulas hipofaringeana e constatou um aumento na atividade dessas quando se iniciou a primavera, ou seja, o período onde as abelhas nutrem as crias com maior frequência. Outras experiências, como as de RUTZ et al. (1974 e 1976) mostraram que o aumento na concentração de hormônio juvenil (HJ) é responsável pela redução no tamanho das glândulas hipofaringeana em abelhas mais velhas. Já as abelhas jovens apresentavam glândulas totalmente desenvolvidas e concentrações baixas ou intermediárias de HJ.

COSTA-LEONARDO (1985), mostrou outra relação importante nas atividades dentro da colmeia. Ela descobriu que a presença de uma chuva em uma pequena colmeia afeta o tamanho da glândula mandibular das operárias. Essas, na falta da chuva, podem desenvolver seus ovários e iniciar um comportamento de postura, o que afeta todo o equilíbrio da colônia. Feromônios produzidos pela chuva garantem o desenvolvimento normal das glândulas mandibulares das operárias e diminuem a longevidade das mesmas.

A divisão de trabalho está, então, fundamentada na capacitação do indivíduo para exercer uma determinada tarefa, sendo essa alcançada pela maturação fisiológica para seu desempenho, adquirida por etapas, com o avanço da idade (COSTA-LEONARDO e CRUZ-LANDIN, 1985).

Vários outros trabalhos de comportamento têm sido realizados na tentativa de elucidar os mecanismos de controle dessa divisão de trabalho. WHIFFLER et al. (1988) mostraram que a defensividade na colmeia de Apis mellifera scutellata está relacionada com o equilíbrio e o número de indivíduos de uma colmeia. Quando essa era populosa, apresentava boa quantidade de cria e pólen, a divisão de trabalho era bem caracterizada e um grande número de abelhas desenvolvia atividade de guarda, o que aumentava o poder defensivo da colônia. As colmeias fracas e pouco populosas mostraram resultados inversos. HUANG e ROBINSON (1992), estudaram a relação operária-operária e concluíram que a integração entre as operárias promove a troca de várias informações. Essas são mediadas pela troca de feromônios e alimento, por trofaláxis. Assim, o desenvolvimento fisiológico dessas operárias pode ser regulado de acordo com a necessidade da colmeia e a divisão de trabalho segue um padrão flexível, de acordo com o desenvolvimento e as necessidades da colônia.
Um estudo importante na caracterização dos mecanismos genéticos que controlam comportamentos sociais foi realizado por ROSS (1998), onde foi descoberto que o gene Gp-9 está relacionado ao comportamento social em formigas Solenopsis invicta. O polimorfismo nesse gene gera alterações fisiológicas que determinam mudanças no comportamento de ovoposição da rainha, definindo o aceite ou não da mesma no ninho. No entanto, apesar dos trabalhos já realizados, pouco se sabe sobre a regulação dos diversos comportamentos sociais em nível molecular, principalmente no que tange à regulação na expressão gênica relacionada com a divisão de trabalho.

SEVERSON et al. (1989) realizaram um estudo pioneiro no qual foi feita a tradução in vitro do mRNA para examinar mudanças específicas de casta na transcrição de Apis mellifera. Foi observado que haviam diferenças na quantidade de proteínas, entre pupas e larvas. Esses resultados foram os primeiros a mostrar que as alterações relacionadas à diferenciação específica de casta, nas fêmeas de abelhas, são associadas com mudanças na atividade transcriacional.

Assim, pode-se supor que a divisão de trabalho em Apis mellifera está intimamente relacionada com a expressão gênica. Dessa forma, estudos envolvendo a análise da expressão gênica podem fornecer informações importantes para a melhor compreensão dos eventos que ocorrem em uma colmeia, bem como sua organização.

1.4. Genes X Comportamentos

Alguns trabalhos já foram realizados para determinar quais os componentes genéticos estão envolvidos no comportamento dos animais. Várias relações já foram estabelecidas, entretanto, muito ainda pode ser feito com as diversas técnicas da Biologia Molecular.

PLOMIN (1990), realizou uma revisão dos diversos mecanismos genéticos de controle do comportamento. Ele afirma que vários genes são responsáveis por determinado comportamento. Mutações, deleções e outros fatores relacionados com a expressão gênica podem modificar os mecanismos fisiológicos que determinam um padrão comportamental e essas alterações estão passadas aos descendentes. Para provar isso, existem vários exemplos como o da Drosophila melanogaster cacofônica, descrito por PEIXOTO e HALL (1998), onde uma mutação no gene do canal de cálcio causa anormalidades sensíveis à temperatura, convulsões, que afetam o comportamento de corte da Drosophila.

Um outro exemplo, dado por JUNG e SCHELLER (1991), mostra que alterações nos genes do molusco Aplysia californica podem afetar o seu comportamento de postura. Esse comportamento está associado a uma série de peptídeos que são produzidos por um mecanismo secretor neuronal. Quando ocorrem alterações gênicas, há produção de diferentes peptídeos que modificam o comportamento de postura desses seres.

Vários estudos foram feitos para determinar a relação genes X comportamento. Porém, com o avanço de fisiologia molecular, técnicas como RFLPs (Restriction Fragment Length Polymorphism) e hibridização in situ podem ajudar a esclarecer a fisiologia e regulação dos comportamentos (PLORIN, 1990).
1.5. Transcrição reversa

A transcrição reversa consiste na síntese de moléculas de DNA (cDNA) a partir de RNA. A primeira descrição dessa técnica ocorreu em 1987 (VERES et al., 1987), quando foram realizados estudos sobre mutações de ponto no gene da ornitina carbamilase, usando subclones derivados de uma amplificação de segmentos de RNA. Para que isso fosse possível foi necessário utilizar a enzima de retrovírus transcriptase reversa, para catalisar a síntese do cDNA.

1.6. Differential Display - Reverse Transcriptase – PCR (DDRT-PCR)

Os organismos superiores contêm cerca de 100.000 genes diferentes, dos quais somente uma pequena fração, cerca de 10.000 a 15.000, são expressos em qualquer célula. A escolha de quais genes são expressos é que determina os processos da vida: desenvolvimento; homeostase; resposta a estímulos; regulação celular; idade, etc. (MANNIATIS et al., 1987). Assim, comparações da expressão gênica em diferentes tipos celulares ou tecidos fornecem informações úteis na compreensão dos processos biológicos que controlam a vida.

Um problema é encontrar meios de identificar e isolar esses genes que estão expressos diferencialmente nas várias células ou sob condições alteradas. As atividades dos genes são refletidas nos tipos e quantidades de suas espécies de mRNAs e proteínas (LIANG et al., 1995).

De acordo com LIANG et al. (1995) alguns critérios são importantes em uma metodologia que vise caracterizar a expressão gênica: (1) a maioria dos 15.000 mRNAs numa célula deve ser visualizada; (2) a reprodutibilidade deve ser alta; (3) deve permitir a comparação de mRNA de diferentes fontes; (4) as diferenças encontradas devem ser úteis para identificar e isolar os genes correspondentes, mRNA ou cDNAs, tornando-a uma técnica mais potente que as análises de proteínas em gel, onde há dificuldade em obter proteína suficiente para a caracterização molecular e (5) deve ser rápida e fácil.

Vários métodos utilizados para distinguir mRNAs, em estudos comparativos, estão associados com técnicas de hibridização subtrativa ou diferencial (LIANG e PARDEE, 1992). Entretanto, essas técnicas são pouco sensíveis e apresentam dificuldade em identificar mRNAs raros; essa metodologia também recupera genes de forma incompleta, é trabalhosa e demorada.

A técnica “Differential Display” foi descrita por LIANG e PARDEE (1992, 1993) para identificar genes diferencialmente expressos entre as 15.000 espécies de mRNAs, em duas populações de células mamárias. Posteriormente, foi nomeada DDRT-PCR de acordo com a terminologia da reação em cadeia de polimerase – PCR (BAUER et al., 1993). Esse método é direcionado para a identificação de genes, em duas ou mais situações, detectando espécies individuais de mRNA que são mudadas em diferentes células eucarióticas e também permite recuperar e clonar o seu DNA.

A estratégia do método consiste de três passos básicos e dois opcionais (WARTHOE et al. 1995): 1- transcrição reversa em frações usando um grupo de “primers” 3’ ancorados T₁₂VN (onde V= A, C ou G e N= A, C, G ou
que se anelam na porção 3' do mRNA (cauda de poli(A)); 2- amplificação das espécies de cDNA de cada fração, usando um grupo de “primers” 5' arbitrários (20 a 26 diferentes) e “primers” 3’ ancorados; 3- separação por eletroforese dos fragmentos resultantes; 4- reamplificação dos fragmentos que são diferentes entre as duas situações em estudo, clonagem e sequenciamento; 5- confirmação da expressão diferencial por uma técnica de análise de RNA (Northern blotting, Rnase protection e/ou nuclear run-on). O esquema geral do processo encontra-se representado na Figura 1.

Os “primers” arbitrários de 10 pb já haviam sido utilizados por WILLIAMS et al. (1990) e WELSH e MACCLELLAND (1990) para amplificar polimorfismos no DNA e mais recentemente para obter mRNAs alvos de genes diferencialmente expressados (WELSH et al., 1992).

1.7. Aplicações do DDRT-PCR e refinamento da técnica

Essa técnica tem sido amplamente utilizada, com sucesso, por vários grupos, para isolar genes expressados diferencialmente em várias situações biológicas, incluindo câncer, diabetes, embriogênese, desenvolvimento cerebral e outros (WARTHOE et al., 1995).

Em 1992, LIANG et al., utilizaram o DDRT-PCR para comparar mRNAs de células epiteliais mamárias humanas normais e tumorais e descobrir que o gene S1 pode estar relacionado com o controle do crescimento normal dessas células do câncer de mama. Também ficou provado no seu trabalho que a técnica é eficiente e totalmente aplicável na análise da expressão gênica em eucariotos.

ADATI et al. (1995), verificaram que o gene XK endo B se expressou diferencialmente e está relacionado com o desenvolvimento embrionário de Xenopus laevis. HELPS et al. (1995), utilizaram o DDRT-PCR em Drosophila melanogaster para caracterizar e isolar o gene homólogo ao gene BRC1 humano, sendo esse diferencialmente expresso em tumor de mama.

Outros estudos, realizados por KANG et al. (1995; 1996), analisaram o sistema imune de Trichoplusia ni pela alteração na expressão gênica após injeção da bactéria Enterobacter cloacae β12 e conseguiram isolar genes relacionados à cecropina A, lisozima e atacina; essa mostrou grande homologia com a atacina ácida de Hyalophora cecropia.
Figura 1: Esquema da estratégia básica da técnica do DDRT-PCR.
MOMIYAMA et al. (1995), verificaram o padrão de expressão gênica durante a embriogênese somática precoce em sementes de Solanum melongena L., isolando e sequenciando vários genes relacionados a esse processo. CUNNINGHAM et al. (1996), estudaram o desenvolvimento de suínos e descobriram, via DDRT-PCR, um aumento na expressão de produtos de PCR específicos durante a rápida elongação trofoblástica, o que ajudou a esclarecer alguns pontos no desenvolvimento desses animais.

DONADELLI et al. (1996), submeteram células endoteliais ao estresse de descamação por fluxo laminar e verificaram alterações na expressão gênica, para melhor compreender suas propriedades estruturais e funcionais. Seus resultados mostraram que o gene SS-1 foi diferencialmente expresso quando ocorreu o estresse e esse gene codificava uma proteína não descrita até o momento.

DIMOPOULOS et al. (1996), detectaram cDNAs relacionados com maltase, uma subunidade da V-ATPase, uma proteína ligante de GTP, duas lecitinas diferentes em Anopheles gambiae, esclarecendo diversos pontos da relação desse parasita com seus hospedeiros.

HIRAI (1998), descobriu quatro novos cDNAs relacionados com o hormônio juvenil em corpos gordoosos de Riptortus clavatus.

Alguns trabalhos foram realizados com o intuito de melhorar a técnica, tais como BAUER et al. (1993) que mostraram a eficiência de géis não desnatantes na análise do DDRT-PCR.

MOU et al. (1994), encontraram que os “primers” ancorados com no mínimo uma base G foram mais eficientes que os com uma base C, e que os “primers” terminados em A ou T (porção 3’) foram os menos eficientes na amplificação de mRNAs originados de fibroblastos e tecidos cardíacos de ratos.

GUIMARÃES et al. (1995) conseguiram provar que, contrariamente à maioria dos trabalhos já realizados, o DDRT-PCR pode ser realizado utilizando somente um “primer”. Ele utilizou o “primer” T12MC (onde M = A, C ou G) com sucesso, mostrando que pode ser possível realizar o DDRT-PCR com um número pequeno de combinações de “primers”.

HADMANN et al. (1995) e TRENTMANN et al. (1995), utilizaram o 32P como uma alternativa ao uso do 35S na marcação dos produtos amplificados. LIANG et al. (1993), provaram que o número de "primers" ancorados pode ser reduzido de 12 para 4 "primers" degenerados na penúltima base (T_{12}MA, T_{12}MG, T_{12}MC e T_{12}MT). MOTLIK et al. (1998), mostraram que o corante infravermelho IRD4 é uma alternativa ao uso da marcação radioativa por 33P. WANG (1995), utilizou "primers" com uma adição de 9 pb a mais que os convencionais 10 pb e realizou o sequenciamento direto dos fragmentos isolados por DDRT-PCR. AN et al. (1996), utilizaram "primers" ancorados marcados com biotina (porção 5'), evitando os radioisótopos, em estudos de câncer de próstata e provou que essa marcação é eficaz e é uma boa alternativa ao uso de elementos radioativos.

Centenas de outros trabalhos utilizando a técnica do DDRT-PCR foram e estão sendo realizados em diversos organismos, e mostram que a técnica têm se tornado cada vez mais eficaz e, com certeza, a mais utilizada no momento para isolar e caracterizar genes diferencialmente expressos. Isso deve-se à sua simplicidade, sensibilidade, versatilidade e baixa necessidade de RNA (LIANG et al., 1992; BAUER et al., 1993; ZIMMERMANN e SCHULTZ, 1994; XINKANG et al., 1995).

A partir dos conhecimentos relatados aqui, mostrando a eficiência do DDRT-PCR, o presente trabalho visou otimizar a técnica para Apis mellifera; no que se refere à análise da expressão gênica diferencial na divisão de trabalho dessa espécie, utilizando a marcação não radioativa por nitrato de prata. Foi também objetivo desse trabalho, verificar a diferenciação na expressão gênica, por DDRT-PCR, em grupos de indivíduos de diferentes idades e relacionar com a tarefa desempenhada pelas abelhas, bem como, comparar três protocolos de extração de RNA total.

2 - MATERIAL E MÉTODOS

Este experimento foi desenvolvido nos Laboratórios de Genética e Genética Molecular, ambos do Departamento de Genética e Bioquímica (DEGEB) da Universidade Federal de Uberlândia (UFU).

2.1. Material Biológico

2.1.1. Montagem da caixa de observação

Foi montada uma caixa de observação de Apis mellifera, onde haviam dois quadros com pupas, larvas, mel, pólen e cerca de cinco mil abelhas adultas. Esses quadros se originaram de um ninho recém estabelecido no Campus Umuarama da UFU. Foram tomados alguns cuidados para que a rainha fosse transportada com segurança. A partir daí as abelhas foram alimentadas, periodicamente, com mel para melhor se adaptarem às novas condições e para que a colônia se estabilizasse. A colmeia foi instalada no Laboratório de Comportamento Animal da Universidade Federal de Uberlândia – UFU, Campus Umuarama.
2.1.2. Coleta e marcação das abelhas

Após cerca de cinquenta dias, a caixa de observação encontrava-se estabilizada, com bom número de crias novas, milhares de abelhas adultas, mel e pólen em quantidades suficientes para a demanda da colmeia. Dos dois quadros, aquele com mais cria operculada foi retirado e colocado em uma outra caixa lacrada (maternidade), enquanto o outro foi deixado na colmeia de observação. A maternidade foi colocada em uma estufa regulada a 32°C, o que é essencial para o desenvolvimento normal das abelhas. A maternidade foi aberta várias vezes por dia e as abelhas recém-nascidas foram coletadas durante um período de três dias. Após a coleta, elas foram marcadas com etiquetas de papel ou cola colorida (não tóxica). As cores de cada marcação eram diferentes para indicarem o dia em que cada grupo nasceu.

2.1.3. Inserção das abelhas na colmeia e observação do comportamento

Terminada a marcação das abelhas (cerca de 700 indivíduos), as mesmas foram introduzidas de volta à colmeia de observação. A partir daí, foram realizadas observações, para estabelecer o comportamento dessas abelhas dentro do ninho com relação à divisão de trabalho. Essas observações foram realizadas durante trinta dias, sendo duas horas por dia, uma no período da manhã e uma à tarde; perfazendo um total de sessenta horas. Foram observadas as principais tarefas realizadas pelo grupo de indivíduos marcados em cada dia de vida, dispondo-se de uma lupa manual e de uma lanterna com luz vermelha para não interferir na normalidade da colmeia. Os dados coletados foram anotados em planilhas para posterior análise.

2.1.4. Coleta e preparação das amostras para extração de RNA total

Após o período de observações, mais abelhas, filhas da mesma rainha, foram marcadas e inseridas na colmeia (cerca de 500) do mesmo modo que as anteriores e essas mesmas foram coletadas e preparadas para extrair o RNA total. As abelhas foram coletadas em intervalos de cinco dias, do 1º ao 30º dia de vida dos adultos, perfazendo um total de sete classes de idade (1, 5, 10, 15, 20, 25 e 30 dias) e com 10 amostras por classe. Essas idades foram correlacionadas com as tarefas desempenhadas pelo grupo anterior de abelhas para se obter um padrão das tarefas realizadas por cada classe de idade.

Logo após serem coletadas, realizaram-se testes nos quais as abelhas foram tratadas com álcool 70% ou com hipoclorito de sódio 2.5%, para eliminar as bactérias do trato digestório e das partes externas das abelhas. Em seguida, foram feitos esfregaços da cabeça, do tórax e dessas estruturas maceradas em placas com meio LB sólido (SAMBROOK et al., 1987) e deixadas a 37°C. Isso foi necessário para verificar o crescimento de bactérias e fungos e, assim, determinar qual o reagente mais eficaz na eliminação de contaminantes bacterianos. As amostras foram, em seguida, mergulhadas em nitrogênio líquido e estocadas a -80°C para preservar o RNA.

2.2. Extração do RNA total
Primeiramente, o RNA total foi extraído de larvas para se otimizar a extração, pois essas são mais fáceis de macerar e possuem menos impurezas. Para isso, utilizaram-se três protocolos: o descrito por CHOMCZINSKI E SACCHI (1987) usando isotiocianato de guanidina; o de KLEMENTZ et al. (1995) por meio de fenol:clorofórmio e finalmente o que utiliza TRIZOL Reagent (GIBCO – BRL).

Após a otimização do protocolo de extração de RNA total, utilizando TRIZOL Reagent (GIBCO – BRL), foram feitas extrações das amostras correspondentes a cada grupo de idade, tomando-se os devidos cuidados para evitar a contaminação com RNases. A extração foi realizada somente de tecidos do tórax e cabeça; as patas, asas e abdômen das abelhas foram retirados para evitar contaminação com bactérias e outras impurezas. Cada amostra era composta por dez abelhas, que compunham um “pool” de RNA total. Isso foi necessário para se evitar a detecção de diferenças na expressão gênica individual, pois o que interessa a esse trabalho é caracterizar grupos de operárias.

Cada grupo de abelhas foi macerado em nitrogênio líquido, pesado e transferido para um microtubo (estéril e novo) de 2 ml. Para cada 100 mg de tecido macerado foi adicionado 1ml de TRIZOL Reagent (GIBCO-BRL). A solução ficou reagindo por 5 minutos e, logo em seguida, adicionou-se 0,2 ml de clorofórmio. O tubo foi agitado por 15 segundos e deixado por 3 minutos em repouso. Após esse tempo, a solução foi centrifugada a 12.000 x g por 15 minutos à 4°C e, então, o sobrenadante foi transferido para um novo tubo, onde adicionou-se 0,5 ml de isopropanol. A amostra foi incubada à temperatura ambiente por 10 a 30 minutos e centrifugada a 12.000 x g por 10 minutos a 4°C. O sobrenadante foi descartado e o “pellet” ressuspensão em 1 ml de etanol 100%. O material foi centrifugado a 13.000 x g por 10 minutos a 4°C, o sobrenadante foi descartado e o tubo foi deixado brevemente à temperatura ambiente para secar o “pellet” e, finalmente, esse foi ressuspensão em água tratada com DEPC 0,1%.

Todo o material utilizado (pinças, microtubos, cadinhos, lâminas, etc.) e os reagentes foram devidamente tratados com DEPC eliminando todo tipo de RNases. Os materiais de laboratório, como as ponteiras e microtubos eram novos e foram incubados em estufa a 65°C, por no mínimo três dias, para evitar a atuação de RNases que degradariam o RNA (SAMBRICK et al., 1989). As luvas também eram novas e descartadas frequentemente durante todo o manuseio do material.

2.3. Eletroforese do RNA total

Após a extração, foi feita a verificação da qualidade do RNA pela eletroforese de 2 a 3 μl de RNA total em gel de agarose 2%, em tampão Tris-Borato EDTA (TBE) 0,5X conforme SAMBRICK et al. (1989) e sob uma corrente constante de 120 V. Antes de ser aplicado no gel, o RNA foi diluído em 1:10 partes de formamida e 4 a 10 μl de tampão de carregamento (azul de bromofenol 3,61M, xileno ciano 4,64M, sacarose 1,17M e EDTA 0,1M pH8,0) (GODING, 1998). A diluição em formamida foi para proteger o RNA de degradação (CHOMCZINSKI, 1992). Foi utilizado o corante brometo de etídio diluído no gel a uma concentração de 0,5 μg/ml de gel. As amostras foram visualizadas em transluminador UV e fotografado em VDS Image System.
Pharmacia, usando filtro laranja; com tempo de exposição, contraste e fator de correcção da câmara variados.

2.4. Tratamento do RNA total

Terminada a extração e eletroforese do RNA total, as amostras foram tratadas com RNase-free DNase I (Promega) de acordo com as recomendações do fabricante (1U/100 μg de DNA). Após esse tratamento, o RNA foi precipitado adicionando-se o dobro do volume de cloreto de lítio 6M e permaneceu reagindo durante a noite, a -20°C. Em seguida, a solução foi centrifugada a 13.000 x g por 10 minutos a 4°C e o “pellet” ressuspensido em água tratada com DEPC. Todo o material extraído foi armazenado a –80°C para proteger o RNA de degradação por RNases.

2.5. Quantificação e qualificação do RNA

O RNA foi quantificado por absorbância a 260 nm em espectrofotômetro Hitach U-2000. Uma aliquota de 5 μl foi diluída 200 vezes em água ultrapura para a leitura. As concentrações de cada amostra foram calculadas pela fórmula:

\[\text{[RNA]} = \text{ABS}_{260} \times 40 \times \text{Fator de diluição (200)}, \]

e diluídas para uma concentração de 200 ng/μl.

Uma pequena aliquota (2 a 3 μl) de RNA foi corrida novamente em gel de agarose 2%, como descrito anteriormente, para verificar a qualidade do RNA e eficiência do tratamento com RNase-free DNase I.

2.6. Differential Display – Reverse Transcriptase – PCR (DDRT-PCR)

2.6.1. Transcrição reversa

Primeiramente, foram realizados experimentos com RNA de larvas e adultos para otimizar o protocolo correto e assim obter uma transcrição reversa com a maior eficiência possível, uma vez que, esta é uma etapa fundamental no desenvolvimento do DDRT-PCR.

Na otimização variou-se, inicialmente, a quantidade de RNA em cada reação (200, 500 e 1000 ng). Em seguida, outros testes foram feitos variando a quantidade de “primer” degenerado (reconhece todas bases nitrogenadas) T18VN (10, 20 e 40 pmoles), a concentração de dNTPs (10, 20 e 200 μM) e o tipo de tampão da enzima transcriptase reversa (com ou sem BSA).

No decorrer desses testes, o “primer” T18VN foi substituído pelo “primer” 3’ ancorado T12GC. Assim, após tudo otimizado, foram utilizados 200 ng de RNA de tecido dos adultos, de cada grupo de idade, os quais foram transcritos reversamente na presença de 200 U de transcriptase reversa MMLV-RT, 20 μM de dNTPs (dTTP, dCTP, dTTP e dGTP), 20 pmoles “primer” T12GC, 20 U de Rnasin (GIBCO-BRL), 4 μl de tampão 5X
(Tris-Cl 250 mM, pH 8.3, KCl 375 mM, MgCl₂ 15 mM) e completou-se com água até um volume final de 20 μl. A reação foi incubada por 10 minutos a 65°C, 60 minutos a 37°C e 5 minutos a 95°C (LIANG, 1995). A MMLV-RT foi adicionada após 10 minutos de incubação a 37°C para aumentar a eficiência na síntese do cDNA (LIANG, 1995). A temperatura final de 95°C foi utilizada para inativar a transcriptase reversa, pois esta inibe a atuação do Taq DNA polimerase na amplificação do cDNA (SELLNER et al., 1992; FEHLMANN et al., 1993).

2.6.2. Amplificação do cDNA

A amplificação ocorreu via PCR, onde foram feitos diferentes ensaios para otimizar as concentrações de “primers”, MgCl₂, dNTPs, Taq DNA polimerase e cDNA. Também foram realizados experimentos utilizando os “primers” T₁⁰VN e T₁²GC para verificar sua eficiência. Após a etapa de otimização, foram selecionados seis “primers” curtos de 10 pb, com sequências arbitrárias e ricos em G e C (cerca de 50 a 60%), da OPERON Technology (Tabela 1). Em cada reação de amplificação foram utilizados 2 μM de dNTPs (dATP, dCTP, dGTP e dTTP), 20 pmole de “primer” ancorado T₁²GC, 1 U de Taq DNA Polimerase, 4 pmole de “primer” arbitrário de 10 pb, 2 μl de tampão 10 X (Tris-Cl 100 mM, KCl 500 mM, MgCl₂ 1,5 mM) e 4,0 μl de cDNA. O volume final foi completado com água ultrapura até 20 μl. Cada grupo de reações apresentava um controle negativo (branco), com todos os componentes da amplificação, exceto o DNA molde. Isso foi feito para verificar o nível de contaminação dos reagentes.

As amplificações foram realizadas em termociclador PTC-150 MiniCycler™, em 40 ciclos de 94°C por 30 segundos, 40°C por 2 minutos, 72°C por 30 segundos e uma temperatura de extensão final de 72°C por 5 minutos, conforme LIANG et al. (1995).

Tabela 1. “Primers” selecionados para amplificação e suas respectivas sequências

<table>
<thead>
<tr>
<th>“Primer”</th>
<th>Seqüência (5' → 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA 08</td>
<td>GTGACGTAGG</td>
</tr>
<tr>
<td>OPA 12</td>
<td>TCGGCGATAG</td>
</tr>
<tr>
<td>OPA 14</td>
<td>TCTGTGCTGG</td>
</tr>
<tr>
<td>OPA 16</td>
<td>AGCCACCGAA</td>
</tr>
<tr>
<td>OPA 17</td>
<td>GACCGCTTGT</td>
</tr>
<tr>
<td>OPA 18</td>
<td>AGGTGACCGT</td>
</tr>
</tbody>
</table>

2.6.3. Eletroforese dos produtos amplificados
Após a amplificação e durante a otimização, os produtos foram separados em gel de poliacrilamida (19:1–Acrilamida:Bis) 6%, não desnatrantante, de dimensões 15 cm X 15 cm e 0.75 mm de espessura, tampão Tris–Borato EDTA (TBE) 1X, conforme SAMBROOK et al. (1989), e sob uma voltagem constante de 200 V por cerca de 2 horas. Foram também realizados testes utilizando géis desnaturantes de poliacrilamida 6% e géis não desnaturantes 10%.

Cada amostra era composta de 4 µl de DNA amplificado e 3 µl de tampão de carregamento (azul de bromofenol 3,61 M, xileno cianol 4,64 M, sacarose 1,17 M e EDTA 0,1 M pH 8).

2.6.4 Coloração e visualização dos produtos amplificados

Logo após o término da eletroforese, o gel foi corado de acordo com BLUM et al. (1987) e BASSAM et al. (1991). Primeiramente, foi deixado por 30 minutos em ácido acético 10%, lavado 2 vezes com água ultrapura por 2 minutos, corado por 20 minutos em solução composta de 100 mg de nitrato de prata, 150 µl de formaldeído e 100 ml de água. Após corado, o gel foi lavado 2 vezes com água por 30 segundos e, finalmente, revelado em solução gelada composta de 3 gramas de carbonato de sódio, 150 µl de formaldeído, 20 µl de tiossulfato de sódio e 100 ml de água. O tempo de revelação foi variado pois, assim que as bandas se tornavam visíveis, a reação era interrompida com ácido acético 10%.

2.7. Análise do gel

Após o gel ter sido corado por nitrato de prata, ele foi colocado para secar em bastidores de madeira com papel celofane. Quando seco, o gel foi copiado por “scanner” e a partir daí analisado em computador para verificar possíveis polimorfismos entre as amostras.

3 – RESULTADOS E DISCUSSÃO

A partir dos dados obtidos da análise do comportamento das abelhas inseridas na colmeia, foi possível elaborar o etograma da divisão de trabalho. Esses dados foram plotados em gráficos para facilitar a análise (Figuras 2 e 3).

A Figura 2 representa o padrão médio da distribuição de tarefas das abelhas inseridas na colmeia (aproximadamente 700). Esse padrão foi obtido a partir das observações, onde foi estimado um número de operárias que estavam realizando determinada tarefa em cada dia de vida adulta.
Figura 2: Distribuição de tarefas durante os 30 dias de vida adulta das operárias observadas na colmeia.

Ao analisar a Figura 2, verificou-se que há uma sequência de tarefas bem nítida e diferenciada, como já descrito por RÖSCH (1925), RIBBANDS (1953) SAKAGAMI (1953) e FREE (1980). Entretanto, a relação idade-tarefa encontrada mostrou-se diferente da descrita por esses autores evidenciando a plasticidade no desempenho dessas tarefas. Essa flexibilidade é que promove a grande capacidade de adaptação dessa espécie, de acordo com as exigências do meio. Vale lembrar que as operárias observadas nos estudos anteriores diferem geneticamente das estudadas nesse trabalho, podendo isso influenciar nos diferentes padrões de comportamento.

Os dados da Figura 2 também permitem visualizar um aumento no grau de complexidade dos comportamentos relativos à divisão de trabalho. A partir do 10º dia de vida, as operárias passaram a desempenhar um maior número de tarefas numa mesma idade. Isso pode ser explicado, de acordo com COSTA-LEONARDO e CRUZ-LANDIN (1985), pelo desenvolvimento fisiológico que ocorre nesses indivíduos com o avanço da idade, tornando-os aptos a realizar trabalhos mais complexos, como o de produzir cera, atividade de vôo para forrageamento e o de dança.

A Figura 3 mostra também a distribuição de tarefas dentro da colmeia, porém enfatizando as tarefas realizadas nos dias específicos em que foram realizadas as coletas de amostras, de mesmas idades, para a extração de RNA total.

Na Figura 3, fica evidente a realização de determinadas tarefas pelas operárias. Observou-se que nos primeiros dias de vida adulta (1º ao 5º
Dia) as tarefas desempenhadas foram as de faxineira e de nutriz. As tarefas começaram a variar no 10º dia e as operárias passaram a ficar mais imóveis, possivelmente produzindo cera. Iniciou-se a tarefa de construir favos do 10º ao 20º dia e no 15º dia observou-se a atividade de cuidados com a cria (limpeza e manutenção dos alvéolos). Notou-se ainda que a partir do 20º dia começaram a ser desempenhados trabalhos mais elaborados, como dança, forrageamento (campeira) e patrulhamento para troca e manipulação do alimento vindo do campo. Essas últimas tarefas ocorreram até o final dos dias de vida das operárias, onde as abelhas marcadas não foram mais observadas. Isso aconteceu no 30º, 31º dia de vida adulta.

Figura 3: Principais tarefas desempenhadas por operárias durante os dias específicos de coleta para extração de RNA total.

A extração do RNA total, intreglo e livre de impurezas, foi um dos pontos críticos para o desenvolvimento desse trabalho. Os testes com álcool 70% e hipoclorito de sódio 2,5% mostraram que esse último foi o mais eficaz no tratamento para se evitar contaminantes bacterianos (Figura 4). Além de ser eficaz, o hipoclorito de sódio 2,5% não afetou a integridade do RNA total das abelhas.

A Figura 4 mostra os experimentos feitos com álcool 70% e hipoclorito de sódio 2,5%, onde notou-se o crescimento acentuado de bactérias quando foi utilizado somente o álcool. Já o hipoclorito de sódio, inibiu totalmente o crescimento de qualquer microorganismo. O controle positivo (sem tratamento) mostrou que há presença de bactérias no tórax e na cabeça das abelhas. O meio de cultura estava estéril e isso foi provado pelo controle negativo (sem amostra). Os tecidos macerados mostraram também a presença de bactérias e que, também, foram eliminadas com hipoclorito de sódio 2,5%.
Figura 4: Fotos mostrando o crescimento de bactérias das amostras tratadas ou não com álcool 70% e hipoclorito de sódio 2,5%. A- Experimento completo com controle positivo e controle negativo. B- Amostras maceradas e inteiras tratadas. T= tórax. C= cabeça. 1= controle negativo sem a amostra; 2= tecidos macerados com e sem tratamento de hipoclorito; 3= material tratado com álcool; 4= controle positivo (sem tratamento); 5= tecidos macerados com e sem tratamento de álcool; 6= tecidos íntegros com e sem tratamento de álcool; 7= tecidos íntegros com e sem tratamento de hipoclorito.
Observou-se, durante a otimização da extração de RNA, que os protocolos descritos por CHOMCZINSKI (1987) e por KLEMENTZ et al. (1985) não se mostraram tão eficientes na extração de RNA de abelhas quanto o que utilizou TRIZOL Reagent. Os dois primeiros protocolos, apesar de largamente utilizados, mostraram-se trabalhosos, demorados e o RNA extraído apresentava muitas impurezas além de contaminação com DNA genômico. (Figura 5).

Figura 5: Padrão eletroforético da extração do RNA total de abelhas de 1 dia de idade em gel de agarose 2%. A, C e E- utilizou-se o protocolo descrito por Chomczinski. B, D e F- usou-se o protocolo descrito por Klementz. M= marcador de 100 pb. Setas mostram contaminação por DNA.

Já o protocolo utilizando TRIZOL Reagent, permitiu uma extração de boa qualidade, além de ser rápido e prático, o que é extremamente vantajoso pois o RNA deve ser extraído rapidamente para evitar sua degradação. Na Figura 6, está representado o padrão do RNA obtido a partir
deste protocolo, onde percebe-se a boa qualidade da extração pela presença de várias bandas, as quais representam mRNAs intactos, de acordo com Prof. Dr. José Edson Fonseca Figueira (comunicação pessoal), e com baixa contaminação por DNA.

Figura 6: Padrão eletroforético da extração de RNA total, utilizando-se TRIZOL REAGENT, de abelhas de 1 dia (A 1), 5 dias (B 1 e 2), 15 dias (A 2) e 25 dias (C 1). M = marcador de 100 pb.

A extração do RNA total de um "pool" de 10 abelhas foi importante para evitar que a variação na expressão gênica de cada operária pudesse interferir nos resultados.

A otimização da técnica DDRT-PCR foi ponto central no desenvolvimento desse trabalho e também o que exigiu mais tempo. Vários ensaios foram realizados para melhor compreender a técnica e adequá-la às condições disponíveis no laboratório. Um dos resultados mais interessantes foram os relacionados à comparação dos "primers" ancorados T_{18}VN e T_{12}GC. O primeiro "primer" utilizado foi o T_{18}VN, o qual não mostrou resultados satisfatórios durante a otimização, e o padrão de bandas conseguido não permitiu obter qualquer tipo de conclusão, mesmo variando as condições de reação. Isso despertou o interesse em utilizar outros tipos de marcação, além da marcação com nitrato de prata. Ensaios utilizando dATP marcado com biotina e dCTP marcado com ^{35}S foram realizados e também não mostraram resultados significativos para o "primer" T_{18}VN.

A partir desses resultados, levantou-se a hipótese de que ocorreram alterações com o "primer" T_{18}VN, uma vez que, os outros componentes da reação estavam todos de acordo com o descrito na literatura (LIANG e PARDEE, 1992; BAUER et al., 1993; LIANG et al., 1995). Assim foram feitos outros experimentos, utilizando-se o "primer" T_{12}GC, sob as mesmas condições que o T_{18}VN. A Figura 7 ilustra um desses
experimentos, onde fica evidente a diferenciação no padrão de amplificação dos dois "primers" quando submetidos às mesmas condições.

Uma possível explicação para esse resultado pode estar no fato do "primer" T₁₂VN ser degenerado e assim ao realizar a transcrição reversa o mesmo não apresenta grande especificidade e acaba selecionando um grande conjunto de mRNAs. Esse conjunto, apesar de possuir vários mRNAs, apresenta quantidade pouco representativa de cada espécie de mRNA levando a uma amplificação de baixa resolução. Já o "primer" T₁₂GC apresenta especificidade na sua porção 3' (ancorado), nas suas duas últimas bases (GC), o que permite ao mesmo se anelar às espécies de mRNAs que apresentem a cauda de poli(A) seguida das bases CG. Isso promove uma seleção mais eficiente por parte do T₁₂GC, permitindo a alta representatividade desses RNAs na transcrição reversa e, consequentemente, maior resolução após a amplificação.

![Perfil eletroforético em PAGE 6% não desnaturante comparando os diferentes padrões de amplificação e detecção entre os diferentes "primers", T₁₂GC (1-3) e T₁₈VN (4-6). Diferentes "primers" arbitrários também foram utilizados: 1 e 4- OPA 05; 2 e 5- OPA 16; 3 e 6- OPA 17. 7 e 8-reações de controle negativo. M- marcador de 100 pb.](image_url)
Os ensaios realizados para se saber qual tipo de gel utilizar (desnatante ou não) e a sua concentração (6 ou 10%) mostraram resultados úteis para a realização do DDRT-PCR. O bom padrão de bandas e a maior facilidade no preparo dos géis não desnatantes motivou o seu uso nesse experimento. A Figura 8 mostra dois géis, um desnatante e o outro não desnatante, onde foram aplicadas as mesmas amostras.

Figura 8: Perfil eletroforético em PAGE 6% comparando os diferentes padrões de bandas nos géis, desnatante (A) e não desnatante (B), utilizando os "primers" arbitários OPA 14 (1 a 6) e OPA18 (7 a 13). M= marcador de 100pb

A comparação entre os fragmentos obtidos nos dois tipos de géis não pôde ser estabelecida, uma vez que, no gel não desnatante o DNA "corre" em fita dupla e no desnatante o mesmo "corre" em fita simples. Como nesse trabalho foram adotados os géis não desnatantes, o padrão de bandas mostrado na Figura 8, bem como os polimorfismos detectados serão analisados posteriormente em gel não desnatante (Figura 11).

De acordo com o descrito por LIANG e PARDEE (1992) e LIANG et al. (1993) o gel desnatante mostra um maior número de bandas, enquanto o gel não desnatante fornece um número menor. De acordo com BAUER et al. (1993), o gel desnatante é mais prático e fornece um bom padrão de bandas, o que se nota na Figura 8. Porém, como um dos objetivos desse trabalho foi o de otimizar a técnica para Apis mellifera, o gel não desnatante mostrou-se eficaz.
Outros acréscimos foram os ensaios feitos para comparar a eficiência dos géis de poliacrilamida 6 e 10% no DDRT-PCR, corado por nitrato de prata. A Figura 9 evidencia a diferença na resolução das bandas de uma mesma condição submetida a diferentes géis.

A 1 2 3 4 5 6 7 8 9 10 11 12 Br M B M 1 2 3 4 5 6 7 8 9 10 11 12

Figura 9: Perfil eletroforético em PAGE comparando os diferentes padrões de bandas dos géis 10 % (A) e 1 6% (B). M= marcador de 100 pb. Br.= branco, reação controle negativo. As setas indicam algumas bandas para comparação.

Ao analisar a Figura 9, notou-se que o gel de poliacrilamida 10% mostra um padrão onde as bandas estão mais bem definidas, e o gel nessa concentração é mais fácil de manusear. Já o gel 6%, também mostrou um bom padrão de bandas, porém notou-se que as bandas ficam difusas, além de apresentar alguns borroses o que dificulta visualizar a separação das bandas. As setas indicam algumas bandas que foram comparadas para comprovar o padrão mais definido apresentado pelo gel 10%. Outra questão importante, é que o gel 6% é muito difícil de se manipular, fragmentando-se facilmente.

Quanto aos resultados do DDRT-PCR na divisão de trabalho de Apis, as Figuras 10, 11 e 12 mostram os padrões de bandas dos “primers” arbitários selecionados combinados ao “primer” T₁₂GC, nas diversas idades estudadas.
Figura 10: Perfil eletroforético em PAGE 10% não desnaturante utilizando os “primers” arbitrários OPA 16 (1 a 8) e OPA 17 (9 a 16). 1 e 9= abelhas de 1 dia, 2 e 10= 5 dias, 3 e 11= 10 dias, 4 e 12= 15 dias, 5 e 13= 20 dias, 6 e 14= 25 dias, 7 e 15= 30 dias, 8 e 16= controles negativos. M= marcador de 100pb. Setas indicam fragmentos diferencialmente expressos.

Analisando a Figura 10 nota-se que há várias bandas diferenciadas (setas), originadas da utilização dos “primers” OPAs 16 e 17. Essa diferenciação foi identificada pela ausência ou presença das bandas em determinados dias de vida ou pela maior ou menor intensidade das mesmas. Nas canaletas 2, 9 e 10 notou-se um número maior de bandas, com algumas ocorrendo somente no 5º dia. Esses fragmentos, que estão entre 300 a 500 e 600 a 900 pb (canaletas 2 e 10) expressos no 5º dia de idade, podem estar relacionados com as tarefas de nutriz e/ou faxineira, pois tais funções foram desempenhadas por abelhas com 5 dias de idade na colmeia estudada (Figura 3). Então, esses fragmentos podem estar relacionados com a alta atividade das glândulas faringeanas, altamente desenvolvidas nessa fase.

Notou-se também, que um fragmento de aproximadamente 350 pb aparece do 5º ao 30º dia (canaletas 2 a 7), entretanto, este é fracamente visível no 5º dia e ausente no 1º. Isso pode indicar alguma expressão associada a um produto constitutivo cuja expressão se iniciou no 5º dia, que provavelmente possa estar associado à maturação da operária quanto ao seu sistema sensorial, ou seja, ao desenvolvimento de sua percepção.

Outro fragmento, de aproximadamente 600 pb, foi detectado nas canaletas 9 a 15, porém, com maior intensidade nas canaletas 10 a 12. Esse
pico de maior intensidade pode estar relacionado a um ou mais fatores referentes a mecanismos fisiológicos envolvidos na preparação das operárias para desempenhar atividades de construção ou produção de cera.

Na mesma Figura 10 há ainda um fragmento, com cerca de 600 pb, representado fracamente na canaleta 4 (seta) e também detectado aos 5 dias (canaleta 2), estando ausente nos demais. O fato desse fragmento voltar a aparecer no 15º dia (canaletas 4 e 12) pode sugerir alguma associação com a tarefa de cuidar da cria. Essa tarefa foi desempenhada no 15º dia por um grande número de operárias (Figura 3). Ou então, pode estar relacionada com a diminuição na atividade de nutriz, que foi extinta a partir do 18º dia de vida. Assim, esse fragmento poderia ter uma relação com a regressão das glândulas hipofaringeanas.

Mais um fragmento que pode estar relacionado à regressão dessas glândulas é o detectado entre 1 a 15 dias (canaletas 9 a 12) e que apresenta aproximadamente 700 pb. Tal fragmento foi detectado somente nessas idades, sendo com mais intensidade nos dias 5 e 10 (canaletas 10 e 11). Isso pode mostrar relações com a diminuição no desempenho da tarefa de nutriz que começa a decrescer nesse período (Figuras 2 e 3).

Na Figura 11 (OPAs 08 e 12) notou-se grande número de bandas nas canaletas 4, 5 e 6, com várias bandas específicas presentes somente nessas canaletas (20, 25 e 30 dias). Um fragmento de aproximadamente 370 pb mostrou-se presente nas canaletas 1 a 6, podendo ser um produto constitutivo, como já foi mencionado anteriormente. Outros dois fragmentos, um menor que 100 pb e o outro com aproximadamente 350 pb, foram detectados nas canaletas 1, 4, 5 e 6 estando ausentes nas canaletas 2 e 3, mostrando uma súbita parada na sua expressão, 10 e 15 dias. Pode-se supor que essa variação na expressão esteja relacionada como a flexibilidade na divisão de tarefas. Assim, as abelhas mais velhas, 20 a 30 dias, podem estar expressando cDNAs relacionados com as tarefas desempenhadas nos primeiros dias de vida.

A maior quantidade de bandas encontradas somente do 20º ao 30º dia podem significar cDNAs relacionados aos comportamentos mais elaborados que ocorrem nos últimos dias de vida (campeira, dança e patrulheira). Esses comportamentos estão associados com um maior grau de desenvolvimento cerebral e sensorial. Sendo assim, vários produtos são expressos nesse período, como descreveu PAIVA e CONTEL (1995) ao encontrar um padrão enzimático maior nos períodos onde as abelhas desempenham atividade de vôo (campeiras).

Quando se analisam as canaletas 7 a 13 (Figura 11) verifica-se maior expressividade de bandas no 30º dia (canaleta 13), que também podem estar determinando fatores relacionados com o comportamento de forrageamento (campeira, patrulheira e dança). Um outro fragmento com cerca de 300 pb foi detectado somente nos dias 1 e 5 (canaletas 7 e 8) e, como os já tratados aqui, podem estar relacionados com as atividades de faxineira e nutriz. Por fim, dois fragmentos se mostraram presentes no 5º dia (canaleta 8); um de aproximadamente 100 pb e outro de 200 pb. Esses
fragmentos, sendo exclusivos do 5º dia, também podem sugerir cDNAs relacionados com a função de nutriz.

Figura 11: Perfil eletroforético em PAGE 10% não desnaturante utilizando os "primers" arbitrários OPA 08 (1 a 7) e OPA 12 (7 a 14). 1 e 7= abelhas de 1 dia, 8= 5 dias, 2 e 9= 10 dias, 3 e 10= 15 dias, 4 e 11= 20 dias, 5 e 12= 25 dias, 6 e 13= 30 dias, 14= controle negativo. M= marcador de 100pb. Setas indicam bandas diferenciadas.

Notou-se também, ainda na Figura 11, que nos dias 10 e 15 não ocorreram bandas (canaletas 3, 9 e 10), provavelmente, por um erro de pipetagem durante o processo do DDRT-PCR. Outra explicação poderia ser, realmente, a falta de cDNAs específicos para os "primers" OPAs 08 e 12 se anelarem. Essa última razão parece pouco provável, pois ambos são "primers" pequenos e fáceis de hibridizar com o cDNA molde, como foi comprovado nas outras amostras.

O material referente ao 5º dia e ao "primer" OPA 08, não foi aplicado nesse gel, pois houve degradação do RNA referente a essa idade e não haviam mais amostras amplificadas.

A Figura 12 evidencia o padrão de bandas conseguido pelo uso dos "primers" OPA 14 e 18. As amostras das canaletas 1 a 6, referentes ao "primer" OPA 14, mostraram poucas bandas, sendo que dessas, destacaram-se os vários fragmentos (500 a 900 pb) que aparecem aos 15 dias de idade (canaleta 3). Provavelmente, como já foi discutido, esses fragmentos podem estar relacionados à produção de cera ou à construção de favos. Pode-se
ainda detectar três fragmentos, um de aproximadamente 200 pb, outro de 280 pb e um de 320 pb que aparecem em todos os dias, exceto no 10º e 30º (canaletas 2 e 6). Esse último não apresentou banda detectável, talvez por motivo de erro de pipetagem. A ausência desses fragmentos no 10º dia pode ser devido ao grande período em que as operárias estão imóveis, talvez produzindo cera, com a expressão de alguns genes parada e apresentando metabolismo basal.

Foi também verificado um fragmento com aproximadamente 350 pb presente no 15º dia (canaletas 3 e 9), podendo estar associado à tarefa de construção de favos ou produção de cera. Esse, pode ainda sugerir alguma associação com a tarefa de cuidados com a cria, pois essa é desempenhada de forma acentuada nesse dia de vida.

Ainda na Figura 12, quanto ao padrão de bandas obtido para o “primer” OPA 18, pode-se afirmar que foi o “primer” que apresentou melhor definição quando comparado com os outros OPAs. Foram encontrados fragmentos presentes de 1 a 30 dias de idade (canaletas 7 a 12). Essas bandas (com aproximadamente 600, 700, 900 e 1000 pb) estão destacadas por setas. Nota-se que esses fragmentos estão mais intensos na canaleta 7 (1 dia), diminuindo de intensidade nas canaletas 9 e 10 (15 e 20 dias) e aumentando novamente no 25º dia (canaleta 11). Isso pode sugerir algum mecanismo de controle relacionado ao seu metabolismo, que permitem às operárias desempenhar cuidados com a cria. O aumento dessa atividade no 15º dia (Figura 3) associado à diminuição na intensidade dessas bandas (canaleta 9) é o maior indicativo disso. Talvez, a baixa na expressão desses fragmentos tenha influenciado, de alguma maneira, o desempenho acentuado dessa tarefa.

Figura 12: Padrão diferenciado de fragmentos da amplificação em gel de poliacrilamida 10% não desnaturante utilizando os “primers” arbitrários OPA 14 (1 a 6) e OPA 18 (7 a 12). 1 e 7= abelhas de 1 dia, 2 e 8= 10 dias, 3 e 9= 15 dias, 4 e 10= 20 dias, 5 e 11= 25 dias, 6 e 12= 30 dias, B = controle negativo. M= marcador de 100pb. Setas indicam bandas diferenciadas
Merecem também destaque dois outros produtos de amplificação, cDNAs, um com cerca de 400 pb e outro 450 pb. O primeiro mostrou uma expressão semelhante aos citados acima, podendo também sugerir a mesma relação com tarefa de cuidar da cria. Já o de 450 pb, esteve presente somente no 1a e 10a dia de vida (canaleta 7 e 8) mostrando-se ausente nos demais. Esse fato, pode apresentar uma relação com as tarefas de ninho (nutrição e limpeza) pois, como já foi discutido anteriormente, essas são desempenhadas com mais frequência no intervalo de 1 a 10 dias (Figura 3).

Os “primers” OPAs aqui utilizados, quando comparados entre si, mostraram um padrão variado de bandas para cada idade. Por exemplo, o “primer” OPA 08 mostrou um padrão de bandas maior nos últimos dias de vida (20 a 30) (Figura 11), enquanto o OPA 17, ao contrário, evidenciou uma maior expressão nos primeiros dias após a emergência (1 a 10) (Figura 10). Assim, esse padrão variado de fragmentos comprova a necessidade de se usar vários “primers” arbitrários, em combinação com oligo d(T), para “varrer” toda expressão gênica numa determinada condição, como já descrito por LIANG e PARDEE (1992).

Outro resultado interessante foi obtido com a coloração por prata. Os fragmentos que foram melhor evidenciados, no geral, estavam entre 100 a 900 pb. Os fragmentos que eram menores ou maiores que esse intervalo não apresentaram padrão qualificado para análise. Ainda quanto à coloração por prata, AN \textit{et al.} (1996) descreveu que essa fornece poucas bandas por reação, e que seus resultados são difíceis de controlar e inconsistentes, e que a sensibilidade é muito inferior a dos radioisótopos. Por outro lado, DOSS (1996) apresentou várias vantagens em se usar a prata: custo inferior aos radioisótopos; simplicidade e praticidade; resolução de fragmentos maiores que os detectados por ^{32}P. Entretanto, apesar dos testes com ^{35}S não fornecerem resultados conclusivos, constatou-se nesse trabalho que muitas outras bandas, não analisadas aqui, aparecem fracamente quando se utiliza a prata, o que reforça a ideia de novos testes para melhorar essa técnica. Por isso, e a partir das diferenças encontradas na expressão gênica da divisão de trabalho de \textit{Apis}, novos estudos serão realizados para isolar, clonar e sequenciar os fragmentos polimórficos aqui descritos. Isso esclarecerá ainda mais o desenvolvimento das abelhas.

\textbf{4 - CONCLUSÕES}

- A divisão de trabalho, observada na colmeia, está de acordo com o padrão de uma colmeia normal. Isso sugere que a sequência de tarefas foi executada de acordo com o desenvolvimento fisiológico normal das operárias, que ocorreu com o avanço da idade.

- O tratamento com hipoclorito de sódio (2,5 \%) foi o mais eficiente na eliminação de contaminantes bacterianos.

- A extração de RNA total de \textit{Apis mellifera} foi otimizada com sucesso. O protocolo mais eficaz foi o que utilizou TRIZOL Reagent. Esse
protocolo mostrou-se mais rápido, prático e com custo final inferior aos demais protocolos testados.

- A técnica DDRT-PCR, associada a coloração por nitrato de prata, foi otimizada para Apis mellifera mostrando ser uma técnica aplicável em estudos com abelhas e podendo ser utilizada como um método alternativo ao uso de radioisótopos.

- O DDRT-PCR associado à marcação por nitrato de prata mostrou-se eficaz em detectar, com facilidade, fragmentos de cDNA que correspondem a mRNAs altamente expressados e, consequentemente, com maior quantidade de produto amplificado.

- Das bandas diferenciadas, detectadas pela presença ou ausência em determinada idade ou pela sua variação na intensidade, destacam-se: três fragmentos (100, 200 e 300 pb) que podem estar relacionados à função de nutriz ou de faxineira (1º ao 5º dia); um com cerca de 350 pb presente somente no 15º dia, que pode indicar associação com produção de cera e construção de favos e um último de 600 pb, presente em todas as idades, porém apresentando maior intensidade do 5º ao 15º dia, pode também ter relação com a construção de favos.

- O gel desnaturante poderá ser utilizado com maior eficiência para trabalhos futuros, onde visem o isolamento e sequenciamento de genes.

- Pesquisas visando isolar, sequenciar e caracterizar os fragmentos diferenciados, encontrados nesse estudo, são necessárias para se certificar a quais mecanismos esses fragmentos estão associados. E, ainda, como esses mecanismos regulam a divisão de trabalho da Apis mellifera.

5 - CONSIDERAÇÕES FINAIS

→ Sobre o DDRT-PCR

O DDRT-PCR é uma técnica rápida e confiável, entretanto, sua otimização requer atenção a alguns detalhes. Os "primers" oligo d(T) têm que ser otimizados individualmente, pois foi mostrado nesse trabalho que as mesmas condições de reação para "primers" ancorados não servem para "primers" degenerados. A utilização desses tipos de "primers" é amplamente discutida na literatura, então, recomenda-se que sejam selecionados e otimizados de acordo com o material biológico utilizado.

Os "primers" arbitrários, selecionados nesse trabalho, conforme estudos anteriores, mostraram que são capazes de "varrer" diferencialmente a expressão gênica em uma determinada situação. Isso foi concluído pelo diferentes padrões de bandas obtidos durante o experimento. Por isso, um maior número de "primers" deve ser utilizada para aumentar o "pool" de mensagens avaliadas na expressão gênica.
→ Sobre a coloração por nitrato de prata no DDRT-PCR

O uso do nitrato de prata permitiu a visualização e otimização das condições ideais para a realização do DDRT-PCR em Apis. Entretanto, outros estudos comparando essa metodologia com a marcação radioativa e com quimioluminescência são necessários para verificar melhor sua eficácia. A coloração por prata é prática e fácil de utilizar, além de ser mais barata e menos perigosa que os radioisótopos. Para se ter sucesso com a marcação por prata, são necessários uma boa amplificação e reagentes de qualidade. Dessa forma, novas pesquisas deverão ser realizadas na tentativa de melhorar a qualidade dessa metodologia, além de procurar formas para aumentar seu poder de resolução.

Outra ressalva ao desenvolvimento do DDRT-PCR, é que atualmente são encontrados no mercado vários "kits" que podem agilizar o trabalho. Entretanto, a otimização, a busca e a descoberta de novas alternativas é que difundem melhor o conhecimento, bem como auxiliam a entender mais claramente as técnicas da Biologia Molecular. Assim, a técnica do DDRT-PCR pode ser agilizada, mas deve ser adaptada a cada espécie em estudo.

6 – REFERÊNCIAS BIBLIOGRÁFICAS

RESUMO

Em abelhas *Melipona* a determinação de castas (rainha e operária) decorre de um mecanismo genético-alimentar, diferentemente do que ocorre nas mamangavas, *Apis* e *Trigona*, cuja determinação é alimentar.

Nos meses de setembro a abril, a maior abundância alimentar favorece o desenvolvimento dos *corpora allata*, decorrendo disso a produção de Hormônio Juvenil (HJ) suficiente para ativação de genes feminizantes, determinadores de fêmea completa (rainha), em proporção que se aproxima da proporção mendeliana de 3:1, ou seja, 75% de operárias para 25% de rainhas.

Artificialmente, a casta pode ser induzida pela aplicação tópica de HJ nos estágios L3 tardio e LPD até aproximadamente 72h do seu início, quando se obtém, então, a produção de até 100% de rainhas. Antes da fase de L3, o HJ é tóxico e após 72h do estágio LPD, o HJ não tem qualquer efeito, ou seja, não mais ativa genes feminizantes. Existe, portanto, uma janela temporal compreendida entre os estágios de L3 a LPD na qual o HJ atua, induzindo os genes feminizantes, que determinam as características de rainha.

Rainhas e operárias são formas alternativas das fêmeas adultas de *Melipona* e representam um ótimo exemplo de regulação da expressão gênica durante o desenvolvimento ontogenético.

Para caracterizarmos as diferenças na expressão gênica entre os estágios do desenvolvimento e nas castas de *Melipona scutellaris*, foi utilizada a técnica de DDRT-PCR, que permite analisar genes que se expressam diferentemente entre células, tecidos ou estágios de desenvolvimento.

Foi analisada a expressão gênica estágio-específica em L1, L2, L3, LPD e LD e nos estágios de pupas e adultos, quando também se atentou para a expressão gênica casta-específica.

Foram detectados diversos produtos gênicos específicos para os estágios do desenvolvimento e, entre eles, um produto nitidamente específico para o estágio de rainha adulta. Esse fragmento foi isolado, clonado e sequenciado, resultando em uma sequência de 269 pares de bases.

A comparação desse fragmento com sequências de nucleotídeos depositadas em bancos de dados revelou que os primeiros 52 nucleotídeos correspondiam à sequência do vetor utilizado na clonagem (pCR 2.1 - Invitrogen) e que os nucleotídeos de 53 a 269 comparados em BLAST n e BLAST X não apresentaram identidade com nenhuma sequência depositada no banco de dados.
INTRODUÇÃO

1. Aspectos biológicos de *Melipona*

Os insetos são, atualmente, o grupo de animais dominante na Terra. Ultrapassam, em número, todos os outros animais terrestres e ocorrem, praticamente, em todos os lugares. Dentro do grupo dos insetos, a ordem Hymenoptera destaca-se por representar, certamente, a mais importante. Os Hymenoptera constituem um grupo muito interessante pois, exibem diversidade de hábitos e complexidade de comportamentos, que tem sua expressão máxima na organização social das vespas, formigas e abelhas (BORROR & DE LONG, 1988).

As abelhas sem ferrão, nativas do Brasil, pertencem à superfamília Apoidea, que é dividida em dez famílias. A abelha sem ferrão que se constituirá no material biológico dessa pesquisa, classifica-se em:

<table>
<thead>
<tr>
<th>Reino</th>
<th>Animalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filo</td>
<td>Arthropoda</td>
</tr>
<tr>
<td>Classe</td>
<td>Insecta</td>
</tr>
<tr>
<td>Ordem</td>
<td>Hymenoptera</td>
</tr>
<tr>
<td>Subordem</td>
<td>Apocrita</td>
</tr>
<tr>
<td>Superfamília</td>
<td>Apoidea</td>
</tr>
<tr>
<td>Família</td>
<td>Apidae</td>
</tr>
<tr>
<td>Subfamília</td>
<td>Apinae</td>
</tr>
<tr>
<td>Tribo</td>
<td>Meliponini</td>
</tr>
<tr>
<td>Espécie</td>
<td>Melipona scutellaris</td>
</tr>
</tbody>
</table>
As abelhas são parte integrante do ecossistema da região em que vivem. Sua principal função na natureza é a polinização das flores e, consequentemente, produção de sementes e frutos. As abelhas brasileiras sem ferrão são responsáveis, conforme o ecossistema, por 40 a 90% da polinização das árvores nativas (KERR et al., 1996).

Conhecer a biologia e comportamento dessas nossas abelhas é imprescindível para sua preservação, e, consequentemente, para a conservação de inúmeras espécies que compõem a biodiversidade da flora brasileira.

2. Determinação de sexo e castas em Melipona

As abelhas vivem em sociedades organizadas, compostas por machos (zangões) e fêmeas, sendo estas divididas em duas castas: rainhas e operárias. Os machos originam-se de ovos não fecundados, sendo haplóides (n cromossomos) e as fêmeas originam-se de ovos fecundados e são diplóides (2n cromossomos). Há, também, machos diplóides, originados de ovos fecundados (2n cromossomos).

Com relação à determinação do sexo, MACKENSEN (1951) estudando abelhas da espécie Apis mellifera, propôs a existência de alelos \(x_0 \) responsáveis pelo desenvolvimento de ovários e testículos e a homozigose do \(x_0 \) produziria machos diplóides.

Segundo a teoria do balanço genético (CUNHA & KERR, 1957) existe uma série de genes determinantes de macho em balanço com uma série de genes determinantes de fêmea. Estes últimos teriam efeito aditivo ao contrário dos primeiros.
KERR (1987) e KERR et al. (1988) propõem que o alelo x_o sofre uma taxa de mutação constante para x_{o^1}, x_{o^2}, ..., $x_{o^{20}}$, que é selecionada em populações panmíticas, constituindo-se em uma série alélica que controla o desenvolvimento de testículos e ovários, de acordo com a constituição genotípica. Os machos haplóides podem apresentar genótipos x_{o^1}, x_{o^2}, ..., $x_{o^{20}}$. Os machos diplóides devem apresentar homozigose para os alelos x_o, podendo ser $x_{o^1}x_{o^1}$, $x_{o^2}x_{o^2}$, ..., $x_{o^{20}}x_{o^{20}}$. As fêmeas são heterozigotas, podendo apresentar genótipos $x_{o^1}x_{o^2}$, $x_{o^2}x_{o^3}$, ..., $x_{o^{19}}x_{o^{20}}$ (KERR & NIELSEN, 1967; KERR, 1974).

Segundo MICHENER (1974) a casta em inseto é caracterizada pela morfologia, fisiologia e comportamento de fêmeas que vivem juntas em uma colônia. As abelhas apresentam duas castas: rainha e operária.

Duas teorias explicam a determinação de castas: blastogênica e trofogênica. A blastogênica pressupõe determinação genotípica, enquanto que na trofogênica ou somatogênica a determinação é alimentar, como acontece nas mamangavas, *Trigona* e *Apis* (KERR, 1948).

Em *Melipona*, a determinação é blastogênica. Não há diferenciação entre as células (alvéolos) de rainhas e operárias e verifica-se a operculação da célula logo após receberem o ovo, eliminando-se, assim, qualquer possibilidade de alimentação diferenciada.

Dois loci, X^a e X^b controlam a determinação de casta no gênero *Melipona*. O duplo heterozigoto (X^a_1/X^a_2, X^b_1/X^b_2) é a rainha fértil, desde que receba alimentação suficiente, e que pode tornar-se uma operária, se mal alimentada. Homozigose em um locus ou em ambos (X^a_1/X^a_1, X^b_1/X^b_2; X^a_2/X^a_2, X^b_1/X^b_1; ...) promove o desenvolvimento de uma operária estéril (KERR, 1946; KERR, 1948; KERR, 1950; KERR et al,1966; KERR & NIELSEN, 1966).
A ativação de genes feminizantes, por meio de hormônio, leva à produção de 100% de rainhas a partir de larvas de operárias (BONETTI, 1982; BONETTI, 1990; BONETTI et al., 1994; BONETTI et al., 1995).

Portanto, a diferenciação de castas nessas abelhas seria devido à interação do genótipo (genes X^a e X^b) e ambiente (alimento).

3. A Reação em Cadeia da Polimerase (PCR)

Nos últimos anos, muitos aspectos da biologia molecular têm sido revolucionados pela reação em cadeia da polimerase (PCR), um procedimento no qual moléculas de DNA são amplificadas exponencialmente por múltiplos ciclos de replicação in vitro. Em teoria, se as condições são otimizadas, a PCR pode detectar uma única molécula de DNA em uma mistura complexa (GOODBOURN, 1996).

A tecnologia da reação em cadeia da polimerase foi concebida por KARY MULLIS em meados da década de 80 (MULLIS & FALOONA, 1987; SAIKI et al., 1985) tendo sido premiado com o Nobel de Medicina no começo da década de 90.

Por sua facilidade, versatilidade e sensibilidade, a PCR tornou-se uma poderosa ferramenta para estudos genético-moleculares.

A reação de PCR é baseada no anelamento e extensão enzimática de um par de oligonucleotídeos utilizados como iniciadores (primers) que delimitam a sequência de DNA alvo da amplificação. Os primers são sintetizados artificialmente, de forma que suas sequências de nucleotídeos sejam complementares a sequências específicas que flanqueiam a região alvo (FERREIRA & GRATTAPAGLIA, 1998).
Cada ciclo da PCR consiste de três etapas: desnaturação, anelamento e extensão. Na desnaturação, a temperatura é elevada para 92°C a 95°C, permitindo-se, assim, que as fitas de DNA se separem. O passo seguinte consiste no anelamento dos primers, que acontece com a redução da temperatura para 35°C a 60°C, dependendo do tamanho e sequência dos primers utilizados. Finalmente, a temperatura é aumentada para 72°C, permitindo, desse modo que a enzima Taq-DNA-polimerase faça a adição dos nucleotídeos no sentido 5'→3', a partir da extremidade 3’OH livre do primer, copiando a sequência-alvo do DNA.

Os ciclos podem ser repetidos por algumas dezenas de vezes, sendo que a quantidade de DNA da sequência-alvo dobra a cada ciclo. Desse modo, pode-se obter grandes quantidades do fragmento do DNA de interesse partindo-se de quantidades muito pequenas de DNA. A Figura 1 ilustra os passos do primeiro ciclo da PCR.

Figura 1: Etapas principais da técnica de PCR. Os passos fundamentais de desnaturação, anelamento e alongamento se repetem a cada ciclo.
4. Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR): a técnica e suas aplicações

Os processos de diferenciação celular são determinados por mudanças na expressão gênica. Vários métodos, baseados na reação em cadeia da polimerase, têm sido introduzidos para detecção de genes que apresentam expressão diferencial entre células, tecidos, indivíduos ou estágios diversos de desenvolvimento.

Differential display de mRNA (DDRT-PCR) é um método baseado em PCR desenvolvido por Liang e Pardee (1992) e que permite a comparação sistemática de mRNAs expressos em diferentes células ou tecidos.

As etapas da técnica de DDRT-PCR estão ilustradas na Figura 2.
Figura 2: Esquema da técnica DDRT-PCR.
H-T₁₁: primer ancorado
H-AP: primer arbitrário
Seta indica gene candidato a diferencialmente expresso.
O primeiro passo no processo consiste na extração do RNA total seguido da transcrição reversa do mRNA para cDNA (DNA complementar). Os mRNAs são convertidos em cDNA pelo uso da enzima transcriptase reversa e de um primer oligo-dT ancorado em uma única base, que pode ser C, G ou A. Por exemplo, usando-se o primer oligo-dT com base ânora G, ocorrerá transcrição reversa somente daqueles mRNAs cuja última base antes da cauda poli(A) for C. Por isso, o uso de cada primer ancorado resulta na transcrição reversa de um terço da população de mRNAs de cada amostra.

O protocolo original de differential display utiliza um primer oligo-dT ancorado em 2 bases para a síntese de cDNA e o mesmo primer em conjunto com um oligodesoxirribonucleotídeo arbitrário de 10 bases para amplificação por PCR. Um número de modificações têm sido introduzidas, dentre elas, o uso de primers oligo-dT ancorados em uma única base, combinados com primers arbitrários de 13 bases para amplificação (LIVESEY & HUNT, 1996).

A utilização de primers ancorados em um nucleotídeo para síntese de cDNA tem permitido a redução do número de reações de transcrição reversa requeridos para cada amostra de RNA.

O próximo passo é a amplificação de um subconjunto de cDNAs dentro do pool, com o mesmo primer oligo-dT usado para a transcrição reversa e um primer arbitrário de 13 bases como segundo primer. As reações de PCR são então conduzidas por 40 ciclos a 94°C por 25 segundos, 40°C por 2 minutos, 72°C por 1 minuto, seguidos por 72°C por 5 minutos.

Os produtos são separados, por tamanho, em gel desnaturante de acrilamida/uréia a 6% e corados com prata. O padrão de bandas é analisado e as bandas candidatas a diferencialmente expressas são excisadas do gel e armazenadas para posterior purificação, reamplificação e sequenciamento.
O protocolo original propõe a marcação com radioisótopo, embora modificações tenham sido propostas, introduzindo-se marcação fria e coloração pela prata (LOHMANN et al., 1995).

Até 1992, a hibridação subtrativa era o único método que possibilitava isolar genes diferencialmente expressos. Embora confiável, a hibridação subtrativa é um método tedioso, consome muito tempo e é de difícil execução, além de requerer grandes quantidades de RNA, o que pode ser limitante em muitas situações. Comparada com hibridação subtrativa, DDRT é simples, rápida e mais sensível (ALVES et al., 1998).

Uma série limitação do DDRT-PCR é o aparecimento de bandas de cDNA que não representam transcritos diferencialmente expressos (falsos positivos). Este problema se deve, em parte, à hibridação imperfeita do primer à baixa temperatura de anelamento (40°C) usada para cada ciclo do PCR.

FRANZ et al. (1998) sugeriram a escolha de temperaturas de anelamento relativamente altas durante o primeiro ciclo do PCR, o que reduz o número de produtos de PCR por linha (raia no gel) para cerca de 100. Esse número relativamente pequeno de amplicons pode ser, então, facilmente separado em gel de sequenciamento convencional.

BENITO et al. (1996) obtiveram os melhores resultados em termos de reproduzibilidade, número de bandas e resolução, quando a transcrição reversa foi executada a uma temperatura de anelamento de 42°C e os produtos aplicados em gel de poliacrilamida não denaturante a 6%.

Após seu desenvolvimento em 1992, a DDRT-PCR tem sofrido uma série de modificações com o propósito de melhorar e otimizar a técnica, principalmente no que se refere à eliminação ou diminuição de "falsos positivos" (ALVES et al., 1998).
LUEHRSEN et al. (1997) desenvolveram um protocolo alternativo, no qual são usadas marcações fluorescentes para detecção. Esses autores citam, ainda, que o gel de acrilamida pode ser corado com prata e que, aproximadamente, a mesma intensidade das bandas é encontrada quando comparado com radionmarcação. Os cDNAs excisados do gel, após coloração pela prata, podem ser eluídos e reamplificados para uso em análises posteriores.

DDRT-PCR vem sendo amplamente utilizada para estudos que envolvem comparação entre padrões de expressão gênica, sendo uma poderosa ferramenta para detectar genes que se expressam diferentemente entre células, tecidos, indivíduos ou estágios diversos de desenvolvimento.

Desenvolvimento normal e diferenciação, bem como mudanças patológicas nas células são predominantemente dirigidas por mudanças na expressão gênica. Essas mudanças na expressão gênica podem ser monitoradas por differential display de mRNA.

A técnica de DDRT-PCR tem sido usada para identificar e clonar genes envolvidos em neoplasias, senescência e processos de desenvolvimento (LUEHRSEN et al., 1997).

Pelo uso de DDRT-PCR, KEDAR et al. (1996) identificaram e isolaram vários mRNAs diferentes que são excessivamente expressos ou reprimidos em figado humano normal e com hemocromatose.

BENITO et al. (1996) utilizaram DDRT-PCR para análise de expressão gênica em interação fungo-planta. O estabelecimento de uma interação planta-patógeno envolve expressão gênica diferencial em ambos os organismos. Para isolar genes de *Botrytis cinerea*, cuja expressão é induzida durante sua interação com tomate, foi feita uma análise comparativa do padrão de expressão gênica do fungo na planta com seu padrão de expressão em cultura
in vitro, por meio de differential display de mRNA. A análise da expressão gênica comparativa produziu vários cDNAs de fungo, que representam genes cuja expressão é realçada na planta durante a interação do fungo com a planta.

GROSS & WATSON (1998) utilizaram DDRT-PCR para examinar mudanças na expressão gênica em Saccharomyces cerevisiae induzida por heat-shock e derressão por catabólito. Os autores mostram que essa nova aplicação de DDRT-PCR tem permitido identificar genes que podem ser avaliados como fatores envolvidos na regulação do estresse e tem demonstrado o potencial da técnica para analisar, sistemáticamente, expressão gênica em levedura.

AMSON et al. (1996) por meio de DDRT-PCR, isolaram 10 cDNAs diferencialmente expressos no processo de apoptose induzido pelo gene supressor de tumor p53, em células de rato.

FRANZ et al. (1998) adaptaram o protocolo de DDRT-PCR para estudar a expressão gênica área-específica do cérebro de gafanhoto Schistocerca gregaria.

EVANS et al. (1999) descreveram a utilização de procedimentos genético-moleculares para estudar a expressão gênica específica em rainhas e operárias durante o desenvolvimento de Apis mellifera. Numerosos genes parecem ser expressos, diferencialmente, nas duas castas. Sete genes diferencialmente expressos foram descritos. Dois são particularmente promissores como potenciais reguladores da diferenciação de castas. Os resultados deixam claro que o processo de determinação de castas envolve a ativação de genes específicos em operárias e em rainhas.

CORONA et al. (1999) realizaram uma análise molecular de diferenças que ocorrem entre rainhas e operárias de Apis durante o processo de determinação de castas. Por meio de differential display identificaram dois
genes codificantes de proteínas mitocondriais, subunidade 1 citocromo-oxidase e citocromo c, e mostraram expressão diferencial desses dois genes nas rainhas e operárias. Em particular, o transcrito citocromo c é mais abundante em larva de rainha e durante sua metamorfose, indicando uma maior taxa respiratória nessa casta quando comparada com operária.

OLIVEIRA JÚNIOR (1999) analisou a expressão gênica diferencial em Apis mellifera e detectou 6 genes candidatos a diferencialmente expressos na divisão de trabalho dentro da colméia. Esse autor chama a atenção ainda, para a coloração por prata como uma alternativa eficiente em substituição à marcação radioativa.
OBJETIVOS

1- Analisar a expressão gênica estágio e casta-específica em *Melipona scutellaris*;

2- Identificar, isolar e clonar genes casta-específicos de *Melipona scutellaris*;
OBJETIVOS

1- Analisar a expressão gênica estágio e casta-específica em *Melipona scutellaris*;

2- Identificar, isolar e clonar genes casta-específicos de *Melipona scutellaris*:
MATERIAL E MÉTODOS

1. Material biológico

Foram utilizadas abelhas da espécie Melipona scutellaris (Latreille, 1811) oriundas de Catu-BA, Murici-BA e Alagoinhas-BA (abelhas de beira-mar das duas últimas localidades e do interior do continente, da primeira) mantidas no Meliponário Uberlândia (S 18°55' W48°17') localizado na cidade de Uberlândia-MG.

2. Métodos

2.1. Extração de RNA total

Larvas, pupas e adultos de Melipona scutellaris foram coletadas nas colméias, no Meliponário Uberlândia, congeladas em nitrogênio líquido e mantidas em freezer a -80°C, até o momento da extração do RNA.

Foram feitos pools (bulks) de 3 a 5 indivíduos para extração do RNA total.

O RNA total foi extraído das larvas, pupas e adultos, nos estágios de larva 1 (L1), larva 2 (L2), larva 3 (L3), larva pré-defecante (LPD), larva defecante (LD), pupa de operária (PO), pupa de rainha (PR), operária adulta (OA) e rainha adulta (RA).

A extração de RNA foi processada em TRIZOL Reagent (GIBCO-BRL) utilizando-se os pools formados pelos indivíduos dos estágios acima.
Os indivíduos foram pesados e macerados em nitrogênio líquido. Para cada 100mg de tecido macerado acrescentou-se 1ml de Trizol e transferiu-se a solução para um tubo eppendorf. Adicionou-se 0,2ml de cloroformio para cada ml de trizol misturando-se em vórtex por 15s e incubando-se a 30°C por 2min, seguido por centrifugação a 12000g por 15min, à temperatura de 4°C. A fase aquosa foi então transferida para outro eppendorf e acrescentou-se 0,5ml de isopropanol por ml de trizol, misturando-se e incubando-se por 10min, à temperatura ambiente. Após esse tempo, as amostras foram centrifugadas a 12000g, por 10min, a 4°C. O sobrenadante foi então desperezado e o pellet foi lavado com 1ml de etanol 75%, centrifugando-se a 7500g, por 5min, a 4°C. Após centrifugação, a fase aquosa foi desperezada, deixando-se os eppendorfs abertos para secagem do pellet à temperatura ambiente. Depois de seco, o pellet foi ressuspendido em 100μl de H₂O/DEPC. Desses, 2μl foram utilizados para quantificação em espectrofotômetro e 5μl foram aplicados em gel de agarose 1%, para verificação da qualidade do material. O RNA restante foi estocado em aliquotas de 30μl, em freezer a −80°C.

2.2. Quantificação do RNA em espectrofotômetro

A quantificação das amostras foi feita em espectrofotômetro, utilizando-se comprimento de onda de 260nm, para ácidos nucleicos. Utilizou-se um branco para padronização e as medidas das amostras foram feitas em diluição de 1:500. A concentração é obtida utilizando-se a fórmula:
[RNA] = ABS \times \text{fator de diluição} \times 0,04

onde

\text{ABS} = \text{Absorbância a 260nm};

\text{Fator de Diluição} = \text{número de vezes que a amostra é diluída em H}_2\text{O}/\text{DEPC, na cuveta, no momento da leitura;}

0,04 = \text{unidade de densidade ótica (OD) para RNA.}

A concentração de RNA é dada em \mu g/\mu l.

2.3. Eletroforese em gel de agarose

Um bom indicador da integridade dos RNAs é a análise das bandas em eletroforese (SHENNAN et al., 1996).

Para verificar a integridade dos RNAs extraídos, foram aplicados 5\mu l de cada amostra, juntamente com 2\mu l de tampão de amostra (loading buffer), em gel de agarose 1%. A corrida foi conduzida em tampão TBE 0,5X a uma corrente constante de 100V, por 1 hora. As amostras foram coradas com brometo de etídeo (solução estoque: 10mg/ml) dissolvido no gel, sendo 2\mu l para 100ml de gel, as bandas visualizadas sob luz ultra violeta e o gel fotografado em Image Master VDS (Pharmacia Biotech).
2.4. Remoção do DNA genômico

Anteriormente à transcrição reversa, faz-se necessária uma etapa de purificação do RNA, para remover resíduos de DNA genômico contaminantes. Isto é feito tratando-se o RNA extraído com DNase I \textit{RNase free}.

A digestão com DNase foi feita para um volume final de 20μl, acrescentando-se para cada 20μg de RNA, tampão 10X para concentração final 1X, 10U de RNAsin e 10U de DNase I. Incubaram-se as amostras à temperatura ambiente, por 15 minutos. Adicionou-se 1μl de EDTA (ácido etilenodiaminotetracético) 25mM e incubou-se a 65°C por 10 minutos, colocando-se no gelo, em seguida.

Imediatamente após, fez-se a extração fenólica para remover a DNase I.

Completou-se o volume de cada reação para 200μl com H₂O/DEPC. Adicionou-se 1 volume de cloroform (fenol: clorofórmio: álcool isoaamilico, 25: 24: 1), levando-se ao vôrtex por 1 minuto e misturando-se, manualmente, por mais 5 minutos. Centrifugou-se a 14000g por 5 minutos.

Transferiu-se a fase aquosa para outro \textit{eppendorf} que já continha 1 volume de clorofil (clorofórmio: álcool isoaamilico, 49: 1). Levou-se ao vôrtex por mais 1 minuto e misturou-se, manualmente, por mais 5 minutos. Centrifugou-se a 14000g por 5 minutos.

Transferiu-se a fase aquosa para outro \textit{eppendorf}, adicionou-se 0,1 volume de acetato de sódio 3 M, pH 5.2, misturou-se e acrescentou-se 2 volumes de etanol 100% gelado, agitando levemente.

Incubaram-se as amostras a -20°C por 2 horas ou \textit{overnight}, após o que procedeu-se nova centrifugação a 14000g, por 30 minutos, a 4°C.
Removeu-se o sobrenadante e fez-se a lavagem do *pellet* com 3 volumes de etanol 70% gelado. Centrifugou-se a 14000g, por 15 minutos a 4°C, removeu-se o sobrenadante e o pellet foi seco à temperatura ambiente. Ressuspendeu-se o *pellet* em 20µl de H₂O/DEPC.

Fez-se nova dosagem por absorbância a 260nm e aplicou-se em gel de agarose 1% para verificar a integridade do RNA, como descrito em 2.2.

2.5. Transcrição Reversa do mRNA

A transcrição reversa do mRNA foi feita partindo-se de 200ng de RNA total, mais 8 pmoles de *primer* ancorado à extremidade 3’ HT11A, C ou G, cujas seqüências são as que se seguem:

- **HT11A:** AAGCΤΤΤΤΤΤΤΤΤΤΤΤ
- **HT11C:** AAGCΤΤΤΤΤΤΤΤΤΤΤΤΤΤ
- **HT11G:** AAGCΤΤΤΤΤΤΤΤΤΤΤΤΤΤ

O volume foi ajustado com H₂O/DEPC, seguindo-se a desnaturação a 65°C por 7 minutos. Para cada amostra de RNA total, correspondente a cada uma das fases de desenvolvimento estudadas, foram preparados 3 tubos de reação, ou seja, amostras em triplicata. Colocaram-se os tubos de *eppendorf* no gelo por 3 minutos e deu-se um *spin*, retornando-os ao gelo em seguida.

O *mix* da reação foi preparado em gelo utilizando-se tampão da *Superscript* RTII 5X para 1X, 5mM de DTT, 200µM de dNTPs e 10U de RNAseIn para cada reação.
A seguir, o mix foi distribuído às amostras de RNA desnaturado, as quais foram incubadas em termociclador, a 37°C por 3 minutos. Adicionaram-se 200U (1μl) da Superscript RTII (Gibco) às amostras, com exceção aos brancos, nos quais adicionou-se 1μl de H₂O/DEPC. A transcrição reversa foi realizada em termociclador a 42°C por 50 minutos, seguidos por 75°C por 15 minutos. As amostras de cDNA assim obtidas foram, então, colocadas em gelo, para utilização imediata ou armazenadas em freezer a -20°C por, no máximo, 2 semanas.

2.6. Reações de DD-PCR

As reações de DD-PCR foram preparadas em gelo, acrescentando-se a 1μl de cada amostra de cDNA, 29μl de mix, para um volume final de 30μl.

O mix da reação foi preparado utilizando-se, para cada reação: Tp10X para 1X, 2,5mM de MgCl₂, 200μM de dNTPs, 1U de Taq-DNA-polimerase, 8pmoles de primer ancorado HT11A, C ou G, 8pmoles de primer arbitrário (AP01 ou AP02 ou AP03 ou AP04 ou AP05) que anela à extremidade 5’ e H₂O ultra pura para ajustar o volume.

Os primers arbitrários utilizados apresentam as seqüências:

AP01: AAGCTTGATTGGCC
AP02: AAGCTTGCACTGT
AP03: AAGCTTTGACTCAG
AP04: AAGCTTCTCACAACG
AP05: AAGCTTAGTAGGC
As amostras foram colocadas em termociclador programado para: 40 ciclos de 94°C por 25 segundos, 40°C por 2 minutos, 72°C por 1 minuto, seguidos por 72°C por 5 minutos e 4°C por tempo indeterminado.

Os tubos retirados do termociclador foram mantidos em gelo, para uso imediato, ou guardados a 4°C para posterior utilização.

Desse modo, utilizando-se os 3 primers ancorados combinados com os 5 primers arbitrários anteriormente descritos, obtivemos um total de 15 possíveis combinações, conforme mostrado na Tabela 1.

<table>
<thead>
<tr>
<th>Primers</th>
<th>HT11A</th>
<th>HT11C</th>
<th>HT11G</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP01</td>
<td>A1</td>
<td>C1</td>
<td>G1</td>
</tr>
<tr>
<td>AP02</td>
<td>A2</td>
<td>C2</td>
<td>G2</td>
</tr>
<tr>
<td>AP03</td>
<td>A3</td>
<td>C3</td>
<td>G3</td>
</tr>
<tr>
<td>AP04</td>
<td>A4</td>
<td>C4</td>
<td>G4</td>
</tr>
<tr>
<td>AP05</td>
<td>A5</td>
<td>C5</td>
<td>G5</td>
</tr>
</tbody>
</table>

Tabela 1: Combinações de primers utilizadas.
2.7. Eletroforese dos produtos de DDRT-PCR em gel de poliacrilamida/uréia a 6%

Uma alíquota de 7µl dos produtos de DDRT-PCR foi misturada a 3,5µl de tampão de amostra desnaturante (stop buffer) adicionando-se 20% de gliceral (proporção 2:1, para estabilizar a amostra no pocinho). As amostras foram então aplicadas em gel de poliacrilamida (acrilamida: bisacrilamida – 30: 0,8)/uréia 6% e procedeu-se à corrida em tampão TBE 1X, a 150V por 18 a 20 horas.

O gel foi retirado das placas e submetido à coloração com nitrato de prata.

2.8. Coloração com nitrato de prata

Inicialmente, colocou-se o gel em 100ml de solução de ácido acético a 10% por 10 minutos. Lavou-se o gel 2 vezes com água destilada durante 2 minutos. Em seguida, o gel foi imerso em 100ml de solução de nitrato de prata 0,012M e acrescentou-se 150µl de formaldeído, deixando por 20 minutos, no escuro. O gel foi, então, lavado 2 vezes em água destilada, por 30 segundos, agitando-se sempre. A revelação foi feita em 100ml de solução gelada (4ºC) de carbonato de sódio 0,28M, acrescentando-se 150µl de formaldeído e 20µl de tiossulfato a 4µM, agitando-se sempre, até que a imagem das bandas estivesse nítida. A reação foi paralisada acrescentando-se 100ml de solução de ácido acético 10%, gelado.
Após a coloração, o gel foi fotografado em ImageMaster VDS ou copiado em scanner. Analisado o gel de seqüenciamento, as bandas candidatas a diferencialmente expressas foram selecionadas e recortadas do gel após exaustiva lavagem do mesmo em água destilada, para remoção do ácido acético. As bandas excisadas foram armazenadas em tubos de eppendorff contendo 100µl de H₂O ultra pura e guardadas em freezer a −20°C para posterior purificação (eluição), reamplificação e seqüenciamento.

O critério utilizado para seleção de um fragmento como sendo diferencialmente expresso foi a sua detecção nas três amostras da triplicata, correspondendo a uma das formas estudadas (estágio, casta) e a sua ausência na outra triplicata, correspondente à forma alternativa.

2.9. Eluição dos fragmentos do gel de seqüenciamento

As bandas recortadas do gel foram fragmentadas e incubadas a 100°C, por 15min. Centrifugaram-se os tubos por 2 minutos a 13000 rpm e transferiu-se o eluído para outro tubo.

A purificação do DNA foi feita adicionando-se 10µl de acetato de sódio 3M, pH 5,2; 2,5µl de glicogênio 20mg/ml e 450µl de etanol 100%, a −80°C, por 2h. Centrifugou-se a 15.000rpm, por 20min, a 4°C. Descartou-se o sobrenadante e lavou-se o pellet com etanol 70% gelado, repetindo-se duas vezes. Centrifugou-se por 1 minuto a 4°C e, após secagem, ressuspendeu-se em 15µl de H₂O ultra pura.
2.10. Reamplificação dos fragmentos de DNA diferencialmente expressos

Procedeu-se à reamplificação do cDNA com os mesmos primers utilizados na obtenção da banda (primer ancorado HT11G e primer arbitrário AP05), empregando-se as mesmas condições descritas em 2.6. Foi feita a reamplificação com um tubo de branco, onde não se colocou a amostra, para garantir que se tratava do DNA de interesse.

A reamplificação foi checada em gel de agarose 1,5%, TBE 0,5X.

2.11. Clonagem

Essa etapa foi realizada no Laboratório de Biologia Molecular da Fundação Hemocentro de Ribeirão Preto, cujas instalações foram gentilmente cedidas pelo Prof. Dr. Wilson Araújo da Silva Jr., que, juntamente com a Dra. Maria Cristina Ramos Costa, acompanhou o desenvolvimento do trabalho nessa etapa.

Após confirmação da reamplificação em gel de agarose 1,5%, procedeu-se a clonagem utilizando o T.A. Cloning Kit one-step cloning of PCR products da INVITROGEN, conforme instruções do fabricante.

Nesse kit o vetor utilizado é o pCR 2.1, que se apresenta em forma linear, com uma timidina na extremidade 3’ de ambas as fitas, o que facilita a ligação do produto da PCR pela base A extra adicionada pela atividade Taq polimerase.

Foi processada a ligação de 1μl do fragmento reamplificado a 2μl do vetor, em presença de T4 DNA ligase, a 14°C, overnight.
A eficiência da reação de ligação foi verificada através de PCR, utilizando 1 pmol dos primers universais forward (F) e reverse (R), nas seguintes condições: 95°C por 4min, uma vez; seguidos por 95°C por 1min., 55°C por 1min, 72°C por 2min, 30 vezes; 72°C por 5min, uma vez; 4°C por tempo indeterminado.

Após isso, procedeu-se à transformação de 90µl de bactéria competente DH5α com 10µl da reação de ligação. As bactérias foram recuperadas em meio 2XYT, sob agitação, e plaqueadas em placas 2XYT contendo ampicilina (100µg/ml) previamente tratadas com 60µl de Xgal (30mg/ml) mais 20µl de IPTG(100mg/ml). As placas foram mantidas em estufa a 37°C por 14 horas.

2.12. Seqüenciamento

a. Preparo de Template para seqüenciamento

Após crescimento em estufa, procedeu-se ao preparo do template para seqüenciamento. Foram selecionadas 18 colônias de bactérias transformadas e inoculadas em poços de microplacas de fundo em U, com 150µl de meio 2XYT contendo ampicilina (100µg/ml). Após incubação em estufa a 37°C por 12h, adicionou-se 75µl de glicerol 70% a cada poço e homogeneizou-se bem. De cada poço foi utilizado 1µl para a reação de PCR com primers R e F (2pmoles de cada) e 1U de Taq DNA polimerase, nas seguintes condições: 95°C por 45s, 55°C por 45s, 72°C por 1min, 35 vezes; 72°C por 5min; 4°C por tempo indeterminado.
Os produtos de PCR foram analisados em gel de agarose 1,5% (4µl) e 2µl foram utilizados para a reação de seqüenciamento.

b. Reação de seqüenciamento

Foi utilizado um seqüenciador automático ABI PRISM 377 DNA SEQUENCER (Perkin Elmer). As reações foram feitas da seguinte forma: 2µl de produto de PCR, 1µl de primer R (3,2 pmol) e 2µl de Big Dye, para um volume final de 5µl.

Anteriormente à aplicação no gel, as amostras foram purificadas por precipitação com etanol e acetato de potássio 3M, pH5,2, para retirada de nucleotídeos e primers não incorporados.

Em seguida, cada amostra foi ressuspender em 2µl de loading buffer e, imediatamente antes da aplicação no gel de seqüenciamento, foram desnaturadas a 95°C por 2min e mantidas em gelo até a aplicação.

2.13. Análise por homologia em banco de dados

O resultado do seqüenciamento foi submetido a análise em programa Sequencer™ 3.1, que permite visualizar a sequência, editar e alinhar em clusters para busca da identidade.

A sequência foi analisada em BLAST n e BLAST X.
RESULTADOS

Para o estudo comparativo durante o desenvolvimento ontogenético e nas castas de *Melipona scutellaris*, foi extraído o RNA total de pools de indivíduos nas fases de larva, pupa e adulto. O principal obstáculo para isolar RNAs não degradados é a contaminação das preparações com ribonucleases, que são enzimas muito estáveis, altamente ativas em ausência de cofatores. Segundo SHENNAN *et al.* (1996) um dos primeiros passos no procedimento de isolamento de RNA total deve ser a rápida inativação das ribonucleases endógenas. Garantimos isso, pela rapidez no procedimento e pela utilização de material RNase-free.

A integridade do RNA foi analisada em gel de agarose 1% após extração (Fig. 3) e após tratamento com DNase I (Fig. 4).

Confirmamos que o material, após extração, pode ser estocado a –80º C por até 1 ano antes do seu processamento para análise. Porém, após tratamento com DNase I, verificamos que o material pode ser guardado por, no máximo, 2 semanas, sem que ocorra perda significativa de qualidade.
Figura 3: Padrão de RNA de *M. scutellaris* nas fases de larva 1 (L1), larva 2 (L2), larva 3 (L3), larva pré-defecante (LPD) e larva defecante (LD) após extração.

Figura 4: Padrão de RNA de *M. scutellaris* nas fases de larva 1 (L1), larva 2 (L2), larva 3 (L3), larva pré-defecante (LPD) e larva defecante (LD) após tratamento com DNase I.
Considerando-se as 15 combinações de *primers* utilizadas para comparar a expressão gênica durante o desenvolvimento de *M. scutellaris* (Tabela 1), as que revelaram maior número de transcritos (perfis ou bandas no gel de seqüenciamento) e melhor resolução foram: G1, G2, G3, G4 e G5. As combinações C1, C2, C3, C4, C5, A1, A4 e A5 apresentaram menor resolução e, também, menor quantidade de bandas no gel de seqüenciamento. As combinações A2 e A3 foram as que apresentaram a pior resolução, bem como o menor número de bandas.

Para finalidades comparativas, dividimos, arbitrariamente, os fragmentos de cDNA em 4 classes, com base na avaliação visual da intensidade relativa das bandas no gel de seqüenciamento.

A primeira classe (Classe I) representa genes que se expressam com a mesma intensidade em todos os estágios do desenvolvimento ontogenético a partir de Larva 1 (L1). Os resultados obtidos com as 15 combinações de *primers* testadas revelaram a presença de transcritos que aparecem em todos os estágios de desenvolvimento analisados (Fig. 5 e Fig. 6).

A segunda classe (Classe II) representa genes que se expressam com diferentes intensidades durante o desenvolvimento ontogenético de *M. scutellaris* (Fig. 6).

A terceira classe (Classe III) representa genes que apresentam expressão estágio-específica. A análise dos géis obtidos pelas combinações dos *primers* anteriormente descritas revelou produtos gênicos específicos para determinados estágios do desenvolvimento, conforme mostra a Fig. 7.

A quarta classe (Classe IV) representa gene cuja expressão foi verificada apenas em rainha e que, aqui, denominamos expressão casta-específica (Fig. 6).
Figura 5: Produtos de DDRT-PCR em gel de poliacrilamida/ uréia 6% corado com nitrato de prata, obtido pela combinação G5.

ESTs de Classe I (→); ESTs de Classe II (↑); ESTs de Classe IV (↔)
LD→ Larva Defecante
LPD→ Larva Pré-Defecante
L3→ Larva 3
L2→ Larva 2
L1→ Larva 1
Figura 6: Produtos de DDRT-PCR em gel de poliacrilamida/ureia 6% corado com nitrato de prata, obtido pela combinação G5. ESTs de Classe I (←), ESTs de Classe II (→); ESTs de Classe IV (↔).

PO → Pupa de Operária
PR → Pupa de Rainha
OA → Operária Adulta
RA → Rainha Adulta
Alguns genes apresentaram padrão de expressão característico durante o desenvolvimento do organismo e foram incluídos entre os genes de Classe III.

O gene 1 (Fig. 7) tem expressão restrita aos estágios de LPD e LD.

Os genes 2 e 4 (Fig. 7) expressam-se em L1, desaparecem em L2 e voltam a expressar-se a partir de L3 até LD.

Os genes 3 e 5 (Fig. 7) passam a expressar-se a partir de L3 até LD.

A análise dos géis obtidos a partir das diferentes combinações de *primers* revelou a presença de uma banda que ocorreu somente em rainhas adultas de *M. scutellaris*, banda essa que foi obtida com a combinação G5 (HT11G e AP05) conforme indicado na Fig. 6. Não se verificou a presença dessa banda nos estágios de desenvolvimento de operárias.

A banda obtida com a combinação G5 parece estar presente também nos estágios de L1 e L2, revelando fraca intensidade de expressão em L1 e expressão intensificada em L2 (Fig. 5).

Esse fragmento da rainha adulta foi isolado, clonado e seqüenciado. As seqüências obtidas foram reunidas em *clusters* e a seqüência B7 (Fig. 8), por ser a de melhor qualidade e representar o consenso de todas as outras, foi utilizada para as buscas nos bancos de dados.

A seqüência B7 apresentou 269pb. O cromatograma na Fig. 9 ilustra o seu seqüenciamento.
Figura 7: Produtos de DDRT-PCR (combinação A4) em gel de poliacrilamida/ uréia 6% corado com nitrato de prata.

ESTs de Classe III (●→)

EST 1: Expressa-se em LPD e LD.

ESTs 2 e 4: Expressam-se em L1 e a partir de L3 até LD.

ESTs 3 e 5: Expressam-se a partir de L3 até LD.

L1→ Larva 1
L2→ Larva 2
L3→ Larva 3
LPD→ Larva Pré-Defecante
LD→ Larva Defecante
Figura 8: Sequência B7 da rainha adulta de *M. scutellaris* obtida pela combinação dos primers HT11G e AP05.
Figura 9: Eletroferograma correspondente à sequência B7 da rainha adulta de *M. scutellaris*.
A busca em banco de dados foi feita utilizando-se o BLAST n (Basic Local Alignment Search Tool - nucleotide). A sequência B7 mostrou 100% de identidade de seus primeiros 52 nucleotídeos com sequências de diferentes organismos depositadas no Gen Bank (Fig. 10 e Fig. 11).

Essa região, presente no fragmento seqüenciado e em vários outros organismos, corresponde à sequência do vetor pCR 2.1 (Invitrogen) utilizado no procedimento de clonagem.

A sequência correspondente ao vetor foi retirada e começamos a analisar a sequência B7 a partir do 53º até o 269º nucleotídeo, buscando identidade entre esta região e sequências depositadas no banco de dados. Essa sequência não apresentou identidade com quaisquer outras sequências depositadas.
Figura 10: Resultado do alinhamento entre os 52 primeiros nucleotídeos da sequência B7 e sequências depositadas no Gen Bank após análise por BLAST n.
Sequências produzindo significativos alinhamentos:

<table>
<thead>
<tr>
<th>Seq ID</th>
<th>Description</th>
<th>Score</th>
<th>E Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>gb:</td>
<td>HY622526</td>
<td>Hydrilla verticillata phosphoenolpyruvate carboxylase, complete ...</td>
<td>103</td>
</tr>
<tr>
<td>gb:</td>
<td>AC008595.1</td>
<td>Nasus maculatus clone p15,1, complete</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>AF119621.1</td>
<td>Uncultured gamma proteobacterium SUR ...</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>AF005853.1</td>
<td>Homo sapiens EST clone 1 mRNA ...</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>AF03115.1</td>
<td>Homo sapiens mRNA precursor protein (5 ...</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018071.1</td>
<td>Homo sapiens D15S1066 mRNA repeat region ...</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>U52973.1</td>
<td>Felis catus fetus (CCK4) mRNA, complete ...</td>
<td>94</td>
</tr>
<tr>
<td>embl:</td>
<td>AJ250192.1</td>
<td>Homo sapiens partial mRNA for mus ...</td>
<td>94</td>
</tr>
<tr>
<td>embl:</td>
<td>AE005168.1</td>
<td>Homo sapiens RBK gene, exons 1-8</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>L22944.1</td>
<td>Human immunodeficiency virus type 1 ...</td>
<td>94</td>
</tr>
<tr>
<td>gb:</td>
<td>AF009885.1</td>
<td>Homo sapiens EST clone 3 mRNA ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>U36623.1</td>
<td>Homo sapiens EST clone 3 mRNA ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF013825.1</td>
<td>Homo sapiens EST clone T1-3 immunoglobulin ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018066.1</td>
<td>Uncultured bacterium OS876 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018056.1</td>
<td>Uncultured bacterium OS873 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018004.1</td>
<td>Uncultured bacterium OS872 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018054.1</td>
<td>Uncultured bacterium OS871 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018053.1</td>
<td>Uncultured bacterium OS870 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018052.1</td>
<td>Uncultured bacterium OS90 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018041.1</td>
<td>Uncultured bacterium OS80 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF018036.1</td>
<td>Uncultured bacterium OS78 16S ribosome ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>U58941.1</td>
<td>Homo sapiens mRNA-associated protein mRNA ...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF073995.1</td>
<td>Vibrio cholerae beta-galactosidase (...</td>
<td>92</td>
</tr>
<tr>
<td>gb:</td>
<td>AF01986.1</td>
<td>Onchocerca volvulus beta-tubulin (tu ...</td>
<td>92</td>
</tr>
</tbody>
</table>

Figura 11: Sequências depositadas no banco de dados que produziram alinhamentos significantes com os 52 primeiros nucleotídeos da sequência B7.
DISCUSSÃO

Durante o desenvolvimento de um organismo, programas genéticos diferentes são executados, acompanhados por mudanças no padrão de transcritos em nível de células, tecidos e órgãos. Isso faz com que células diferenciadas sejam equipadas com diferentes tipos de moléculas (FRANZ et al., 1998).

Em organismos superiores, cerca de 15% ou menos dos diferentes genes se expressam em uma célula individual. É a escolha de quais genes são expressos que determina todos os processos vitais como desenvolvimento e diferenciação, homeostase, resposta a injúrias, regulação do ciclo celular, envelhecimento e morte celular programada (LIANG & PARDEE, 1992).

Muitos insetos exibem polifenismos ou morfologias alternativas, as quais são baseadas na expressão gênica diferencial. Rainhas e operárias são formas alternativas da fêmea adulta de abelhas e representam um dos melhores exemplos conhecidos de polifenismo em insetos. A regulação hormonal da determinação de castas em abelhas tem sido estudada em detalhes, mas pouco se conhece sobre os mecanismos moleculares desse processo.

Mudanças na expressão gênica podem ser monitoradas por differential display de mRNA, que foi a técnica escolhida para o presente estudo em Melipona scutellaris. JORGENSEN et al. (1999), mostraram que DDRT-PCR pode ser aplicada para detectar mudanças relativamente pequenas na expressão gênica.
O protocolo original do DDRT-PCR, descrito por LIANG e PARDEE em 1992, foi acrescido de algumas modificações descritas na literatura, como modificações nos primers (BAUER et al., 1993; LIANG & PARDEE, 1993), nos dNTPs radioativos (LIANG & PARDEE, 1995; TRENTMANN et al., 1995), na eletroforese (BAUER et al., 1993; LOHMANN et al., 1995) e na purificação e clonagem dos produtos amplificados (WANG & FEUERSTEIN, 1995). LOHMANN et al. (1995), citam que a coloração pela prata poderia ser usada para a detecção dos produtos amplificados, em substituição à marcação com radioisótopos.

As modificações adotadas no presente trabalho produziram resultados satisfatórios para a análise da expressão gênica diferencial em *M. scutellaris*, tanto em nível de estágio de desenvolvimento quanto nas castas. A substituição da marcação radioativa pela coloração por nitrato de prata, mostrou-se eficiente, revelando, em média, 50 transcritos por linha no gel de seqüenciamento. Esse resultado está de acordo com LUEHRSEN et al. (1997) segundo os quais um gel de acrilamida pode ser corado com nitrato de prata, apresentando grande sensibilidade e, aproximadamente, a mesma intensidade de bandas quando comparado com a marcação radioativa.

A utilização de primers ancorados em duas bases (HT11AA, HT11CG, HT11AG, HT11GG, HT11TG, HT11GA, HT11CA, HT11TA, HT11AC, HT11CC, HT11GC e HT11TC) combinados com 5 primers arbitrários, produziria um total de 60 reações. A utilização de primers oligo-dT ancorados em uma única base, permitiu a redução do número de reações de transcrição necessárias para cada amostra de RNA. Assim, cada primer HT11A, C ou G, permite a transcrição reversa de um terço da população de mRNAs que
possuem as bases U, G ou C situadas logo após a cauda poli-A. Ancorando em uma única base o total de reações passa para 15, ou seja, é reduzido em 1/4.

DDRT-PCR mostrou ser um método sensível, viável, e aplicável a estudos de expressão gênica em *M. scutellaris*.

A identificação de genes diferencialmente expressos tem sido usada como procedimento experimental para entender não somente a função gênica, como também os mecanismos moleculares envolvidos em vários processos biológicos (VEDOY *et al.*, 1999).

A expressão dos genes durante o desenvolvimento ontogenético de *M. scutellaris* mostrou padrões diferenciais, como mostrados nas Figuras 5, 6 e 7.

A análise do padrão de bandas no gel de sequenciamento permitiu agrupar, arbitrariamente, os produtos de amplificação em 4 classes distintas.

Os transcritos de Classe I correspondem a genes que mostraram-se uniformemente transcritos durante os estágios do desenvolvimento de *M. scutellaris* e, provavelmente, são genes associados à manutenção da estrutura geral e fisiologia da célula. Esses genes *house-keeping*, que ocorrem durante todo o desenvolvimento, codificam para proteínas que são componentes fundamentais da maioria das células, como polipeptídeos componentes da RNA polimerase, DNA polimerase, proteínas de transporte, proteínas ribossomais para atender à demanda de ribossomos necessários à síntese protéica e RNAs ou proteínas envolvidos em *splicing*.

Os genes de Classe II codificam para produtos requeridos em grande quantidade em determinados estágios e em pequenas quantidades em outros, como aqueles mostrados na Figura 6 que apresentaram elevada intensidade nas fases larvais e de pupa, com diminuição visível de intensidade no adulto. Podem ser, por exemplo, genes relacionados à síntese da vitelogenina, precursora do vitelo, que será incluída no óócito em formação, ou, ainda,
podem ser genes associados às esterases, responsáveis pela hidrólise do hormônio juvenil, cuja produção mostra níveis diferentes durante as fases de desenvolvimento (Fig. 5 e Fig. 6).

Os genes Classe III, mostrados na Fig. 7 são aqueles específicos de determinado estágio de desenvolvimento, codificam para produtos cuja síntese continua representaria um desperdício de energia para a célula. Podem ser, por exemplo, genes que codificam para receptores específicos ou proteínas responsáveis pela alteração da estrutura secundária de RNA.

Uma característica particular dos insetos sociais é o fenômeno de determinação de castas, o qual tem sido investigado, desde o século XVIII, por numerosos pesquisadores, utilizando, inicialmente, *Apis mellifera* como modelo (CORONA et al., 1999).

A análise do material com vistas à detecção de transcritos diferencialmente expressos nas castas em *M. scutellaris* revelou um perfil exclusivo de rainha adulta, quando comparado com operária. Esse gene de Classe IV foi detectado, também, em L1 e L2 (Fig. 5 e 6).

Considerando-se que nas fases larvais de *M. scutellaris* não é possível distinguir rainhas de operárias, ao fazermos pools de 5 indivíduos retirados, aleatoriamente, do favo de cria, podemos pegar uma ou mais rainhas, assim como, só operárias.

Estudos anteriores mostram que rainhas de *Melipona* têm maior gasto de energia, evidenciado pelo maior número de mitocôndrias presentes nas células dos *corpora allata* quando comparadas às operárias (BONETTI, 1990) e apresentam, também, maior taxa de respiração celular, como demonstrado por CORONA et al. (1999) em *Apis Mellifera*.

Além disso, morfológicamente as rainhas são bastante diferentes das operárias quanto ao desenvolvimento do aparelho reprodutor, órgãos
sensoriais, tamanho do abdômen, entre outros. Os genes dessa classe podem, portanto, estar relacionados proteínas de ocorrência restrita às rainhas, proteínas essas já verificadas em abelhas de diferentes espécies.

A busca por homologia dos 216 nucleotídeos restantes (nucleotídeos 53 ao 269) não revelou identidade com nenhuma sequência depositada no banco de dados. Pode-se levantar a hipótese de que se trata de um gene novo, específico da rainha, ou ainda, podemos estar diante de uma região não traduzida de um gene. Essa hipótese baseia-se no fato de que a técnica utilizada proporciona, especialmente, informações da região 3’ do gene, região essa, geralmente não codificante, conforme já alertado por (FRANZ et al., 1998) em uma crítica que faz à técnica de DDRT-PCR. A sequência em questão está sendo analisada, mas não podemos descartar a hipótese de que a mesma não represente uma ORF (Open Reading Frame).

A diferenciação de castas em fêmeas de abelhas pode representar um modelo para a elucidação do papel de fatores extrínsecos na regulação genética diferencial, bem como para o exame de mecanismos de controle endócrino envolvidos na programação celular (Severson et al., 1989).
CONCLUSÕES

Os resultados obtidos permitiram:

→Confirmar que DDRT-PCR é um método sensível e aplicável a muitos organismos, como foi para *Melipona scutellaris*, no presente trabalho.

→Mostrar que a coloração pela prata é eficiente na detecção de ESTs em PAGE, permitindo avaliar diferenças na intensidade de expressão génica entre estágios de desenvolvimento de *M. scutellaris*.

→Verificar que o RNA tratado com DNAse I mantém sua qualidade por, no máximo, 2 semanas.

→Confirmar que o RNA extraído pode ser armazenado por até 1 ano, sem perder sua integridade.

→Verificar que, em *M. scutellaris*, há genes *house-keeping*, que se expressam em todos os estágios de desenvolvimento analisados (genes de Classe I).

→Verificar genes que se expressam com diferentes intensidades nos estágios de desenvolvimento analisados (genes de Classe II).

→Detectar genes que se expressam diferencialmente nos estágios do desenvolvimento de *M. scutellaris* sendo estágio-específicos (genes de Classe III).

→Identificar um fragmento em rainha adulta que não apresentou identidade com nenhuma sequência depositada em banco de dados na análise processada até o momento (gene de Classe IV).
REFERÊNCIAS BIBLIOGRÁFICAS

(Hymenoptera, Apidae) por DDRT-PCR. Tese de Mestrado, Universidade Federal de Uberlândia, 57p.

ANEXOS
ANEXO I

PREPARO DE MATERIAIS RNASE FREE

Os reagentes e soluções devem ter qualidade RNase free. Geralmente, os reagentes fines das altas companhias são RNase free, porém, com o uso comum no laboratório, os reagentes costumam ser contaminados. Para as soluções que podem ser autoclavadas não há problema, pois deverão ser tratadas com DEPC, da seguinte forma:

→Para soluções

Prepare a solução e adicionar DEPC para 0,01 a 0,1% (v/v). Essa relação é variável, devido ao fato de um reagente ter sido mais ou menos manipulado/ contaminado que outro. Misturar bem e deixar a solução de um dia para o outro sobre a bancada. No dia seguinte, autoclavar a 121°C por 30 min. A solução está pronta e RNase free.

→Para reagentes em pó ou não autoclaváveis

Alguns reagentes serão utilizados diretamente, como a agarose. Outros, como o fenol, isopropanol, etanol, clorofórmio, enzimas e seus tampões não podem ser autoclavados. Outro, como o TRIS, reage com o DEPC. Então deve-se utilizar um reagente novo e de procedência garantida. Estocá-los corretamente.
Para frascos e tubos de vidro e material autoclavável

Lavar bem o frasco e enxaguar várias vezes com água bidestilada ou miQ. Encher o frasco com água miQ e adicionar DEPC para 0,1% e deixar de um dia para outro. Descartar a água/DEPC e autoclavar o frasco. O frasco orna-se RNase free e servirá para estocar qualquer solução RNase free. As monteiras de micropipetas deverão ser tratadas da mesma forma, com DEPC a 0,1% por um dia, autoclavadas no dia seguinte e armazenadas em racks novas. Os tubos de vidro do tipo corex (altamente resistentes) podem, após tratamento com DEPC, preferencialmente, ao invés de autoclavados, serem nubados num forno seco a 200°C durante uma noite.

Para tubos, microtubos e pipetas de plástico

Os tubos falcon, pipetas de plástico estéreis e eppendorfs de boa origem podem ser considerados RNase free, desde que sejam manipulados com luvas com os devidos cuidados.

A água

Deve ser a de melhor qualidade possível (mi Q ou mi Q Ro). Para a primeira vez, tratar a água com 0,05% de DEPC do modo anteriormente descrito. Após tratamento, alíquotar essa água em eppendorfs ou tubos falcon RNase free e guardar a 4°C. Quando precisar de mais água, pode-se coletar diretamente a água miQ no mesmo frasco tratado e considera-la RNase free. De vez em quando, repetir o tratamento da água e do frasco, pois após alguns meses podem crescer fungos e bactérias. Trocar também os eppendorfs ou tubos falcon das alíquotas. Caso disponha apenas de água bidestilada, esta deverá sempre ser tratada com DEPC e autoclavada.
ANEXO II

ALGUMAS SOLUÇÕES UTILIZADAS

1- *Stop buffer*
Xileno cianol \[1mg\]
Azul de bromofenol \[1mg\]
EDTA \[10mM\]
Formamida completar para volume final = 4ml.

2- Meio 2XYT – pH 7,0
Bacto-triptona \[16g\]
Extrato de levedura \[10g\]
NaCl \[5g\]
Completar com água milliQ para 1lito e autoclarvar.

3- Acetato de potássio
KOAc.3H2O \[147,3g\]
Ácido acético \[7,5ml\]
Água qsp para 500ml e autoclarvar. Estocar a 4°C.