Projeto FAPEMIG

TEC 1294/95

Título: Avaliação do desempenho de sistemas prediais de proteção de equipamentos eletrônicos contra descargas atmosféricas.

Sumário

1 - Formulário 2.10 – Síntese de Resultados.
2 - Palavras-chave e resumo.
3 - Relatório técnico final.
4 - Artigos publicados.
Projeto FAPEMIG

TEC 1294/95

Título: Avaliação do desempenho de sistemas prediais de proteção de equipamentos eletrônicos contra descargas atmosféricas.

Relatório técnico final.

Coordenador: Prof. José Osvaldo Saldanha Paulino
Departamento de Engenharia Elétrica da UFMG

Março de 1999.
Título: Avaliação do desempenho de sistemas prediais de proteção de equipamentos eletrônicos contra descargas atmosféricas.

Palavras-Chave: Descargas atmosféricas – Proteção – Ensaios de alta tensão – Compatibilidade eletromagnética.

Resumo: A partir dos resultados obtidos em um estudo, que utilizou técnicas de modelo reduzido, foi proposta uma metodologia de testes de sistemas de proteção contra descargas atmosféricas instalados em edificações de grande porte (centrais telefônicas, prédios comerciais, hospitais, instalações industriais, centros de processamento de dados, etc.), com o objetivo de avaliar o desempenho e a eficiência do sistema de proteção, frente a sobretensões impostas por descargas atmosféricas.

O estudo em modelo reduzido foi realizado como parte do trabalho de Tese de Doutorado da aluna Maria Luiza Grossi Vieira Santos.

Os estudos realizados indicaram que é possível simular uma descarga atmosférica em um prédio, a partir da energização do sistema de pâra-raios por uma antena ou arranjo de condutores alimentados por uma fonte de corrente impulsiva.

O circuito de teste proposto leva em conta as dificuldades operacionais e de montagem em campo e garante que os campos eletromagnéticos gerados pelo circuito são similares aos campos gerados pelas descargas atmosféricas reais.

A metodologia proposta utiliza um circuito constituído de uma cadeia de resistentes ou de um "fio resistivo". Essa cadeia de resistores simula a presença do canal da descarga atmosférica.

Os estudos permitiram a definição de uma metodologia viável para testar um prédio real. Os primeiros testes estão sendo realizados em um prédio do Departamento de Engenharia Elétrica localizado no Campus da UFMG.

Um empresaria mineira já se interessou pela tecnologia e os primeiros contatos já foram realizados.
Avaliação do desempenho de sistemas prediais de proteção de equipamentos eletrônicos contra descargas atmosféricas.

Objetivos do projeto: Estudo e implementação de uma tecnologia para testar a eficiência de sistemas de proteção contra descargas atmosféricas instalados em edificações de grande porte, visando garantir a proteção dos equipamentos eletrônicos instalados na edificação.

1 - Introdução

A interação entre descargas atmosféricas e edificações se dá basicamente de duas formas: descargas diretas e descargas indiretas. No primeiro caso esta interação ocorre através da injeção de correntes impulsivas com amplitudes elevadas (5 a 200 kA) no sistema de captação de descargas da edificação. Estas correntes, fluindo pelos cabos de descida ou pela ferragem da edificação, no caso da utilização de pára-raios estrutural, darão origem a campos eletromagnéticos que serão acoplados ao conjunto de condutores da edificação. O projeto destes sistemas de captação é definido através de normas da ABNT. No segundo caso, a interação se dá apenas através do acoplamento dos campos eletromagnéticos criados pela descarga atmosférica com o conjunto de condutores da edificação, não havendo a injeção de corrente direta. Os critérios de projeto atualmente estabelecidos nas normas brasileiras não levam em consideração de forma explícita a proteção contra as sobretensões causadas pela interação dos campos eletromagnéticos da descarga e os condutores da edificação. Uma das razões para este fato é que a quantificação destas sobretensões através de métodos analíticos ou numéricos é um problema de difícil solução, pois envolve a solução de equações de campos eletromagnéticos com fontes distribuídas e com efeitos de propagação em uma configuração tridimensional. Recentemente tem surgido técnicas de simulação, como por
exemplo as baseadas em TLM - “Transmission Line Modeling”, as quais possibilitam a solução deste tipo de problema para algumas configurações de sistemas de proteção contra descargas atmosféricas. Um outro método de “resolver” estes tipos de problemas é a utilização de simulações analógicas [1, 2] por meio de modelos reduzidos, a qual permite a avaliação destas sobretensões para determinadas configurações. Um dos objetivos desse projeto foi exatamente utilizar técnicas de simulação em modelo reduzido para estudar este problema.

O trabalho de simulação em modelo reduzido envolveu a modelagem para o fenômeno da descarga atmosférica (canal de descarga, onda de corrente, velocidade de propagação, etc.), modelagem para as edificações, no que diz respeito ao sistema de proteção contra descargas atmosféricas.

Apesar da técnica de modelo reduzido permitir a obtenção de várias informações não é possível a representação de todo os componentes de uma edificação no modelo. Paredes, pisos, fiação interna, janelas, etc. não são consideradas no estudo em modelo reduzido. O ideal é que sejam realizados testes em edificações reais. Desta forma, o presente projeto procurou atingir duas metas básicas:

- estabelecer um modelo reduzido para estudos de indução de tensão em edificações causadas por descargas diretas e estudar alternativas para a realização de teste em edificações reais;
- propor uma metodologia de testes para avaliação da eficiência dos SPDA (sistema de proteção contra descargas atmosférica) instalados em prédios reais.

2 - Estudo em modelo reduzido

O estudo em modelo reduzido foi realizado como parte do trabalho de Tese de Doutorado da aluna Maria Luiza Grossi Vieira Santos. O texto do exame de qualificação da aluna [2], em anexo, apresenta os estudos realizados e as principais conclusões.
3 - Descrição da tecnologia proposta

A partir dos resultados obtidos no estudo em modelo reduzido, foi proposta uma metodologia de testes de sistemas de proteção contra descargas atmosféricas instalados em edificações de grande porte (centrais telefônicas, prédios comerciais, hospitais, instalações industriais, centros de processamento de dados, etc.), com o objetivo de avaliar o desempenho e a eficiência do sistema de proteção, frente a sobretensões impostas por descargas atmosféricas.

Os estudos realizados [1,2], indicam que é possível simular uma descarga atmosférica em um prédio, a partir da energização do sistema de pára-raios por uma uma antena ou arranjo de condutores alimentados por uma fonte de corrente impulsiva.

O circuito de teste deve levar em conta, não só as dificuldades operacionais e de montagem em campo, como também deve garantir que os campos eletromagnéticos gerados pelo circuito sejam similares aos campos gerados por um descarga atmosférica real.

Na proposta de projeto enviada à FAPEMIG foi levantada a hipótese de se utilizar um balão como elemento de sustentação de uma antena que geraria campos eletromagnéticos similares aos campos criados pela descarga atmosférica, como mostra a figura 1.
Figura 1 - Teste em edificação utilizando um balão.

Experimentos preliminares realizados com balões de medição de velocidade de vento, cedidos pela aeronáutica, demonstraram que para alturas superiores a 50 m, o vento dificulta tremendamente a manutenção da antena na posição vertical. Essa e outras dificuldades operacionais indicaram a necessidade de desenvolvimento de uma outra tecnologia para a realização dos testes. Os estudos realizados [2], em modelo reduzido,
demonstram que uma das formas possíveis para a energização do prédio é através da utilização de um circuito auxiliar constituído de uma cadeia de resistores ou de um "fio resistivo". Essa cadeia de resistores simula a presença do canal (antena vertical). Uma visão do circuito de teste proposto é mostrado na figura 2.

Figura 2 - Teste em edificação utilizando cabos auxiliares.

A corrente pode ser aplicada no pára-raios através de um cabo blindado de 13,8 kV que suporta tensões impulsivas de até 110 kV. O laboratório de Alta Tensão da UFMG possui um gerador de impulsos transportável de tensão máxima igual a 100 kV, o que permitiria a aplicação de correntes da ordem de 100 A em um prédio real.

A figura 3 mostra a circulação de correntes no sistema de proteção contra descargas atmosféricas instalado no prédio.
Através dos experimentos com a técnica de modelo reduzido foi determinado o número de cabos auxiliares e a resistência por metro que garantem um resultado aceitável. A figura 4 ilustra algumas das medições que poderão ser feitas no prédio.

Na figura 4:

$V_1 \Rightarrow$ Tensão induzida na rede elétrica/telefônica;

$V_2 \Rightarrow$ Tensão entre equipamentos e cabos de descida;

V_3 e $V_4 \Rightarrow$ Tensões entre janelas e cabos de descida;
\(V_5 \Rightarrow \text{Tensão entre janelas;} \)

\(I_1, I_2 \text{ e } I_3 \Rightarrow \text{Correntes nos cabos de descida e nos cabos equalizadores;} \)

4 - Finalização do projeto

Os estudos já realizados permitiram a definição de uma metodologia viável para testar um prédio real. Como previsto no projeto enviado à FAPEMIG os primeiros testes estão sendo realizados em um prédio do Departamento de Engenharia Elétrica localizado no Campus da UFMG.

Um empresa mineira já se interessou pela tecnologia e os primeiros contatos já foram realizados. Estamos estudando a possibilidade de patentear a tecnologia proposta. Se o registro da tecnologia for possível o mesmo será feito e os direitos de propriedade serão distribuídos conforme as regras atualmente em vigor na UFMG e na FAPEMIG.

8 - BIBLIOGRAFIA

ESTUDO E CONSTRUÇÃO DE UMA ANTENA PARA GERAR CAMPOS ELETROMAGNÉTICOS SIMILARES AOS CAMPOS CRIADOS POR UMA DESCARGA ATMOSFÉRICA NATURAL

Texto de Exame de Qualificação submetido à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Minas Gerais, como requisito parcial à obtenção de título de Doutor em Engenharia Elétrica

Aluna: Maria Luisa Grossi Vieira Santos
Orientador: Prof. Dr. José Osvaldo Saldanha Paulino
Belo Horizonte, 1998
Resumo

Este trabalho propõe o desenvolvimento de um modelo reduzido para estudos de indução de campos eletromagnéticos no interior de edificações causadas por descargas atmosféricas diretas.

É realizado um estudo sobre os mecanismos físicos da descarga atmosférica, a partir dos quais se desenvolve o fenômeno aqui analisado. Em seguida, através de um estudo em modelo reduzido da tensão induzida em linhas aéreas por descargas atmosféricas, procedeu-se à escolha do modelo do canal de descarga a ser utilizado.

Uma vez definido o canal, é apresentado o modelo reduzido do prédio utilizado neste trabalho, bem como a localização dos componentes desse modelo e os equipamentos utilizados nas medições. Para a medição dos campos eletromagnéticos envolvidos, realizou-se um estudo sobre os sensores de campos utilizados, bem como sobre sua calibração.

Utilizando as técnicas de modelo reduzido, após a calibração dos sensores, são feitas medições de campo elétrico no interior do prédio. A partir desses resultados, desenvolveu-se um estudo para se projetar um arranjo capaz de simular o canal de descarga atmosférica, com o objetivo de aplicar esta configuração em um prédio real. Com o arranjo obtido para simulação do campo elétrico, fez-se também uma análise do campo magnético no interior do prédio. Como resultado, é apresentado um conjunto de quatro arranjos de resistores capaz de simular campos eletromagnéticos similares aos criados por uma descarga atmosférica, quando esta atinge um prédio.

Para finalizar, são apresentadas as conclusões obtidas com este trabalho, bem como as propostas para os trabalhos a serem desenvolvidos nas etapas futuras do doutorado.
Abstract

This work is concerned with the development of a reduced model as a tool for studies of induced electromagnetic fields inside a building due to direct lightning discharges.

A preliminary study of lightning induced voltages on overhead lines using reduced model was done with the aim of choosing the modeling used for the discharge channel.

The modeling used for the building, return stroke and ground are presented. The measurement equipments used are described. It is presented a discussion about the electric and magnetic field sensors and the calibration arrangements as well. For the evaluation of the electromagnetic fields inside a building by a lightning stroke, an experimental study was done using a reduced model. Therefore, based on this measurements, an arrangement for representing the discharge channel was developed. The measurements related to the electric and magnetic fields, as well as the characteristics of the arrangement are presented.
Sumário

Resumo

Abstract

Sumário

1 - Introdução

1.1 A Relevância do Tema em Investigação
1
1.2 Propostas de Desenvolvimento
2
1.3 Abordagem do Trabalho
3
1.4 Organização do Texto
4

2 - Descargas Atmosféricas
6

3 - O Canal de Descarga
11

3.1 Introdução
11
3.2 A Teoria de Rusck
12
3.3 O Modelo Reduzido Implementado
14
 3.3.1 - Plano Terra
 3.3.2 - Canal de Descarga
 3.3.3 - Corrente de Retorno
 3.3.4 - Linha Aérea
 3.3.5 - Localização dos Componentes do Modelo Reduzido
15
17
19
20
3.4 Considerações
21
1 Introdução

1.1 A Relevância do Tema em Investigação

Nos últimos anos, a maciça introdução de equipamentos eletrônicos de última geração em todos os setores da sociedade incrementou os estudos relativos à compatibilidade eletromagnética, ou seja, o estudo da interação dos equipamentos com os campos eletromagnéticos naturais e com os campos criados pelos próprios equipamentos.

Os atuais equipamentos eletrônicos utilizam em larga escala circuitos integrados, e os mesmos são extremamente susceptíveis a sobretensões, o que tem provocado um aumento significativo no número de danos a estes equipamentos, principalmente durante o período de chuvas.

Estudos e pesquisas sobre proteção destes equipamentos estão sendo feitos em todo o mundo, podendo-se destacar os trabalhos desenvolvidos na Itália, França, Japão, Alemanha, Estados Unidos, Canadá e Brasil [1].

Estes diversos estudos e pesquisas desenvolvidos indicam que o maior agente perturbador de equipamentos eletro-eletrônicos são as descargas atmosféricas. A probabilidade de uma descarga incidir sobre o equipamento ou a rede é relativamente baixa, mas a probabilidade da descarga incidir nas proximidades destes é bastante elevada, explicando o grande interesse e os elevados recursos que são aplicados nos estudos relativos ao cálculo de tensões induzidas em redes e equipamentos elétricos.

Relatos de acidentes ocorridos no Brasil e no mundo demonstram que, mesmo em prédios onde se instalou um sistema de proteção contra
descargas atmosféricas que obedece às recomendações das normas internacionais, ocorrem danos de grande extensão.

Sendo assim, justifica-se a necessidade de pesquisas adicionais para um melhor conhecimento dos efeitos de uma descarga atmosférica real, e este trabalho representa uma ação objetiva nessa direção.

1.2 Propostas de Desenvolvimento

A interação entre descargas atmosféricas e edificações ocorre basicamente através de descargas directas e indirectas. No primeiro caso esta interação ocorre pela injeção de correntes impulsivas de amplitudes elevadas (5 a 200 kA) no sistema de captação de descargas da edificação. Estas correntes fluem pelos cabos de descida ou pela ferragem da edificação dando origem a campos eletromagnéticos que, por sua vez, interagem com o conjunto de condutores da edificação. No segundo caso, a interação ocorre apenas através do acoplamento dos campos eletromagnéticos criados pela descarga atmosférica com o conjunto dos condutores da edificação, não havendo a injeção de corrente directa [2, 3].

Existem vários caminhos para se avaliar as sobretensões causadas pela interação dos campos eletromagnéticos da descarga e os condutores da edificação, sendo que muitos deles são estudos teóricos, desenvolvidos através de métodos analíticos ou numéricos. Recentemente, entre estes métodos, pode-se destacar os estudos que utilizam técnicas de simulação, como por exemplo as baseadas em TLM - “Transmission Line Modeling” [4, 5]. Um outro método que possibilita a solução desse tipo de problema é a utilização de soluções analógicas [2, 3, 6] por meio de técnicas de modelos reduzidos.

Desta forma, o objetivo deste trabalho é estabelecer um modelo reduzido para estudos de indução de campos eletromagnéticos no interior de edificações causadas por descargas atmosféricas directas. O trabalho de simulação em modelo reduzido envolverá, então, a modelagem do fenômeno
da descarga atmosférica (canal de descarga, onda de corrente, velocidade de propagação, etc.), do plano de terra, e das edificações, no que diz respeito ao sistema de proteção contra descargas atmosféricas. Como uma segunda etapa, este trabalho apresenta estudos para simular a presença do canal de descarga a fim de se testar de maneira real um sistema de proteção contra descargas atmosféricas de uma edificação. Neste aspecto este trabalho propõe o projeto de uma antena capaz de simular campos eletromagnéticos similares aos campos criados por uma descarga atmosférica.

1.3 Abordagem do Trabalho

Para se obter a modelagem do fenômeno da descarga atmosférica, ou seja, o canal de descarga, a onda de corrente, a velocidade de propagação, etc., foi necessário, primeiramente, a realização de um estudo do fenômeno de tensão induzida em linhas aéreas por descargas atmosféricas. Este estudo se tornou necessário pois, como os métodos analíticos ou numéricos são de solução bem difícil para a quantificação das sobretensões causadas pela interação dos campos eletromagnéticos da descarga e os condutores da edificação, não está disponível ainda um programa computacional capaz de fazer esse cálculo, de forma que não é possível compararmos as ondas obtidas no modelo reduzido a ser implementado, e assim saber se a modelagem do canal de descarga está correta.

Sendo assim, a modelagem do canal de descarga foi feita a partir de um estudo da tensão induzida em linhas aéreas, através da implementação de um modelo reduzido. Desta forma, através de comparações das ondas de tensão induzida medidas com as simulações obtidas no programa computacional para cálculo da tensão induzida em linhas aéreas por descargas atmosféricas, desenvolvido no CPDEE, por Lopes [7, 8], baseado na teoria de Rusck [9], podemos obter uma modelagem confiável para o canal de descarga atmosférica e, então, prosseguir com os estudos das edificações.
1.4 Organização do Texto

Este trabalho de tese compõe-se de 7 capítulos, que são brevemente apresentados a seguir.

No presente capítulo, *Introdução*, apresenta-se a importância do tema em investigação, e as principais motivações que levaram ao desenvolvimento do trabalho. Além disso, apresentam-se as etapas de desenvolvimento propostas.

O segundo capítulo, *Descargas Atmosféricas*, apresenta o fenômeno descarga atmosférica no que diz respeito aos mecanismos físicos, a partir dos quais se desenvolve o fenômeno analisado neste trabalho.

No capítulo três, *O Canal de Descarga*, é apresentado um estudo para a modelagem do canal de descarga atmosférica, sendo que para isso se inclui, de forma bem sucinta, a modelagem adotada por Rusck para o fenômeno quando do cálculo da tensão induzida por descargas atmosféricas, o modelo reduzido implementado para o estudo do canal, bem como os resultados obtidos nessa etapa.

O modelo reduzido implementado para o estudo de indução de campos eletromagnéticos no interior de edificações causadas por descargas atmosféricas diretas, bem como as características do sistema de medição e dos equipamentos utilizados, estão apresentados no capítulo 4, *Modelo Reduzido do Prédio*.

No capítulo cinco, *Sensores de Campos Eletromagnéticos*, é feito um estudo sobre os sensores de campos utilizados, bem como sobre calibração, além de apresentar os resultados da calibração para utilização neste trabalho.

No capítulo seis, *Resultados Obtidos*, são apresentados os resultados obtidos com o modelo reduzido implementado utilizando o canal. Em seguida, tendo como base os resultados obtidos anteriormente, é feito um estudo em modelo reduzido para simular a presença do canal de descarga, incluindo a apresentação dos resultados obtidos, bem como uma
comparações entre medições realizadas com o canal e com o arranjo utilizado para representar o canal.

As conclusões e propostas para continuidade e finalização deste trabalho são apresentadas no último capítulo, Conclusões.
2 Descargas Atmosféricas

O estudo de qualquer fenômeno físico utilizando as técnicas de modelo reduzido requer um conhecimento prévio acerca dos mecanismos físicos a partir dos quais se desenvolve o fenômeno em questão. Desta forma, serão apresentados a seguir, os mecanismos físicos da descarga atmosférica.

As fontes mais comuns de descargas atmosféricas são as nuvens de chuva do tipo cúmulo-nimbus, as quais são polarizadas segundo um processo ainda não explicado satisfatoriamente, gerando campos elétricos de valores suficientes para romper a suportabilidade do meio.

São quatro os tipos de descargas que podem ocorrer:
- descargas dentro da própria nuvem;
- descargas entre nuvens;
- descargas entre a nuvem e a atmosfera;
- descargas entre nuvem e terra [10].

Neste trabalho, apenas o último tipo exposto é de interesse, sendo então o único aqui apresentado.

Embora não se conheça precisamente como as nuvens se tornam carregadas, de maneira geral pode-se dizer que o aparecimento de cargas no interior das nuvens tem sua origem nas colisões de partículas de diferentes tamanhos, sendo que as correntes ascendentes de ar tendem a transportar as partículas positivas e as pequenas gotas d’água para a parte superior da nuvem, enquanto as grandes gotas d’água levam as partículas negativas para a base da nuvem, formando-se um grande centro de cargas
negativas na região inferior da nuvem e um centro de cargas positivas induzido na terra.

Quando o gradiente elétrico da concentração de cargas na nuvem (ou na terra) excede a rigidez dielétrica do ar, dá-se a descarga atmosférica, a qual é caracterizada pelo movimento de cargas em direção à terra (ou à nuvem).

A figura 1 mostra o processo mais comum de desenvolvimento de uma descarga atmosférica - formação de uma descarga piloto a partir de um centro de cargas negativas na nuvem, seguido por uma corrente de retorno.

Antes da descarga piloto atingir o solo, ocorre um movimento ascendente de cargas de polaridade oposta à da descarga piloto, devido ao alto campo elétrico existente entre a ponta da descarga e o solo. Então, estas cargas ascendentes se encontram com a descarga piloto em algum ponto acima do solo, iniciando a partir deste ponto a corrente de retorno [11].

Figura 1: Aspecto de uma descarga atmosférica [11]
Neste momento tem-se o seguinte sistema: uma nuvem carregada ligada à terra por meio de um condutor não linear, com perdas e elétricamente carregado, que é o canal de descargas. A corrente de retorno, então, se propagará pelo canal, anulando primeiramente as cargas do canal e posteriormente as cargas da nuvem.

O tempo de frente da onda de corrente de retorno é, tipicamente, de 1 a 10 μs e o tempo de semi-cauda está na faixa de 20 a 60 μs, sendo que sua amplitude se encontra na faixa de 10 a 100 kA [12]. Por suas características, elevada amplitude e alta taxa de subida, a corrente de retorno pode ser identificada como a principal etapa da descarga atmosférica para o fenômeno da tensão induzida [10].

No momento em que a corrente de retorno completa a descarga do centro de cargas da nuvem que iniciou o processo, o potencial desse centro de cargas fica bastante reduzido, desenvolvendo-se uma elevada diferença de potencial entre este e um outro centro qualquer dentro da nuvem. Desta forma, são criados canais que ligam essas regiões e o caminho ainda ionizado da primeira descarga, podendo se iniciar um novo processo só que agora o raio segue um caminho sem ramificações e com uma velocidade bem maior que a da descarga piloto. Esse processo pode repetir-se várias vezes; são as descargas subseqüentes. Estima-se que a carga depositada no canal pela propagação contínua é menor que no caso anterior, o que está de acordo com as baixas amplitudes das ondas de correntes de retorno medidas em descargas subseqüentes [11].

As descargas atmosféricas podem ter polaridade positiva ou negativa, dependendo da polaridade das cargas depositadas no canal durante a sua formação e podem ser ascendentes ou descendentes, de acordo com a direção de propagação das cargas.

No caso de descargas positivas, estas ocorrem com uma frequência bem menor que as negativas, são caracterizadas por uma onda de corrente de retorno de taxa de subida baixa e valor de amplitude elevado. Com relação à direção de propagação, as descargas cuja direção é da nuvem para a terra, são as que normalmente ocorrem, sendo que em estruturas
muito altas podem ocorrer a formação de canais a partir da terra em direção à nuvem [11].

A seguir será apresentada uma tabela que contém mais dados relativos às descargas atmosféricas negativas descendentes, os quais foram reunidos por Uman [12] a partir de publicações de vários autores:

<table>
<thead>
<tr>
<th></th>
<th>Mínimo</th>
<th>Médio</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formação do Canal de Descargas:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- propagação passo a passo:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>. comprimento do passo, m</td>
<td>3</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>. intervalo de tempo entre passos, µs</td>
<td>30</td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>. velocidade média de propagação, m/s</td>
<td>1x10⁶</td>
<td>1,5x10⁶</td>
<td>2,6x10⁶</td>
</tr>
<tr>
<td>. carga depositada no canal, C</td>
<td>3</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>- propagação contínua:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>. velocidade de propagação, m/s</td>
<td>1x10⁶</td>
<td>2x10⁶</td>
<td>2,1x10⁷</td>
</tr>
<tr>
<td>. carga depositada no canal, C</td>
<td>0,2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Corrente de Retorno:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>. velocidade de propagação, m/s</td>
<td>2x10⁷</td>
<td>8x10⁷</td>
<td>1,6x10⁸</td>
</tr>
<tr>
<td>. taxa de subida da corrente, kA/µs</td>
<td><1</td>
<td>10</td>
<td>>80</td>
</tr>
<tr>
<td>. tempo de pico da corrente, µs</td>
<td><1</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>. valor de pico da corrente, kA</td>
<td>10 - 20</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>. tempo de semi-cauda da corrente, µs</td>
<td>10</td>
<td>40</td>
<td>250</td>
</tr>
<tr>
<td>. carga transferida excluindo a corrente contínua, C</td>
<td>0,2</td>
<td>2,5</td>
<td>20</td>
</tr>
<tr>
<td>. comprimento do canal, km</td>
<td>2</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>. diâmetro do canal, cm</td>
<td>1,5</td>
<td>5</td>
<td>200</td>
</tr>
</tbody>
</table>
Tabela 1: Descargas Negativas Descendentes

<table>
<thead>
<tr>
<th>Descarga Atmosférica:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>. número de descargas (inicial mais subsequentes)</td>
<td>1</td>
<td>3 - 4</td>
<td>26</td>
</tr>
<tr>
<td>. intervalo de tempo entre inicial e subsequente, ou entre estas na ausência de corrente contínua, ms</td>
<td>3</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>. duração da descarga, s</td>
<td>10^{-2}</td>
<td>0,2</td>
<td>2</td>
</tr>
<tr>
<td>. carga transferida incluindo a corrente contínua, C</td>
<td>3</td>
<td>25</td>
<td>90</td>
</tr>
</tbody>
</table>
3 O Canal de Descarga

3.1 Introdução

O canal de descarga é o caminho pelo qual flui a corrente de retorno, portanto a sua modelagem é de fundamental importância, e por isso deve ser bem analisada. Visando alcançar este objetivo, fez-se um estudo da modelagem do canal através de uma análise a respeito do fenômeno da tensão induzida em linhas aéreas por descargas atmosféricas, como será apresentado a seguir.

O fenômeno da tensão induzida em linhas aéreas por descargas atmosféricas, apesar de estudado a várias décadas, ainda não resultou em uma teoria unânime a respeito da interação dos campos eletromagnéticos gerados pela descarga e a linha.

As técnicas de modelo reduzido para estudos de fenômenos eletromagnéticos são de grande eficácia para representar sobretensões induzidas por descargas atmosféricas em linhas de distribuição e transmissão de energia elétrica, assim como em cabos telefônicos. Esta técnica apresenta algumas vantagens em relação a outros métodos, pois permite a simulação de descargas em diversos pontos ao longo da linha, sendo que as características da corrente como forma de onda, velocidade de propagação, tempo de frente de onda, assim como ponto de incidência da descarga e distância do canal à linha são conhecidos.
A medição de tensões induzidas por descargas reais em linhas de tamanho real não é muito utilizada, pois o tempo necessário para se obter uma quantidade de dados significativos é muito grande, não se conhece as características da corrente da descarga e nem o ponto de incidência da descarga. Estes fatores desestimulam o uso de protótipos reais nas medições, uma vez que as informações disponíveis não são completas pois, ou os dados se referem apenas às tensões induzidas ou se referem ao ponto de incidência e características da corrente da descarga. Além disso, um modelo real é extremamente dispendioso.

Sendo assim, foi construído um modelo reduzido para estudar o fenômeno da tensão induzida em linhas aéreas, com particular atenção para a modelagem do canal de descarga.

3.2 A Teoria de Rusck

O estudo da tensão induzida em linhas aéreas causada por descargas atmosféricas já foi abordado por vários pesquisadores que desenvolveram suas teorias e metodologias para o seu cálculo teórico, dentre as quais pode-se citar: teoria de Uman, de Chowdhuri e a teoria de Rusck, proposta em 1957 [13].

De acordo com Rusck, a corrente de retorno que se propaga pelo canal de descarga é a principal causadora da tensão induzida, sendo que os demais fenômenos (ruptura preliminar e canalização de cargas negativas para a terra) podem ser desprezados, em função de não provocarem uma variação de campo eletromagnético suficientemente rápida que os tornem significativos do ponto de vista da tensão induzida em linhas.

Dessa forma, Rusck considera um canal de descarga ionizado e carregado, disposto verticalmente em relação ao solo, onde se propagará a corrente de retorno, do solo em direção à nuvem. Em sua teoria ele não considera nem a tortuosidade do canal, nem a variação da distribuição de cargas ao longo deste, causada pela variação da capacitância para a terra.
Como a corrente de retorno neutraliza as cargas presentes no canal, esta é considerada em forma de uma função degrau e viaja sem distorções ao longo do canal.

Finalmente Rusck considera que o solo possui uma resistividade nula, isto é, modela o solo como um condutor perfeito e utiliza o método das imagens para o cálculo do campo eletromagnético. Além disso assume que não há variação significativa do campo entre o solo e a linha, pois a altura desta é muito pequena comparada com o comprimento do canal [9].

Resumindo, o modelo desenvolvido por Rusck para o cálculo da tensão induzida em linhas aéreas é composto por um condutor carregado uniformemente, disposto verticalmente em relação ao solo, representando o canal da descarga atmosférica, onde se propagará a corrente de retorno, representada por um degrau de corrente viajando ascendentemente no condutor. A partir dessas considerações e utilizando as equações de Maxwell, Rusck obteve uma expressão analítica para o cálculo dos campos eletromagnéticos gerados pela descarga atmosférica de onde deduz a expressão para o cálculo da tensão induzida.

Neste momento torna-se importante ressaltar que na modelagem da descarga adotada por Rusck, a corrente de retorno viaja pelo canal neutralizando as cargas ali presentes, enquanto na modelagem implementada no modelo reduzido deste trabalho, o canal está inicialmente neutro e quando a corrente de retorno é injetada, ela se propaga pelo canal depositando cargas elétricas ao longo deste. Com relação ao campo eletromagnético calculado, esta diferença resulta em um valor de campo elétrico inicial diferente, sendo que este é igual ao valor do campo eletrostático devido à carga do canal no instante inicial no primeiro caso, e igual a zero no segundo caso [13]. Como a componente estática do campo elétrico não contribui para a tensão induzida, ambas as modelagens resultam em um mesmo valor de tensão induzida [10].
3.3 O Modelo Reduzido Implementado

O sistema analisado nesta parte do trabalho simula basicamente uma linha aérea e uma descarga atmosférica indireta que atinge o solo nas proximidades dessa linha. Como o objetivo da simulação em modelo reduzido é ser o mais próximo possível da realidade, deve-se primeiramente determinar as dimensões físicas do modelo e dessa forma o fator de escala, de acordo com as dimensões físicas do sistema real.

Uma linha de distribuição aérea real tem uma altura que varia de 6 a 12 m, enquanto o comprimento do canal de descarga está na faixa de 2000 a 14000 m [12]. Sendo assim, quando da determinação do fator de escala deve-se levar em consideração dois fatores:

- Qual a estrutura disponível de sustentação do canal, quando este tem um comprimento muito elevado, no caso de modelo reduzido grande;
- Quais os equipamentos de geração e medição disponíveis, no caso de modelo reduzido muito pequeno, uma vez que há um aumento considerável da frequência dos sinais envolvidos, pois embora as distâncias sejam menores no modelo reduzido, em ambos os casos (real e reduzido) as perturbações eletromagnéticas se propagam com a velocidade da luz; além disso, há a dificuldade de manipulação do modelo muito pequeno [10].

Com relação ao primeiro fator, o canal do modelo pode ter um comprimento de até 25 m, que corresponde à altura do galpão do L.E.A.T., o que daria, considerando um canal de descarga real de 5000 m, um fator de escala de até 1:200. Já para o segundo fator, tem-se que as ondas mais rápidas que ocorrem em uma descarga atmosférica têm tempo de frente da ordem de 1 μs o que implicaria, usando o fator acima estabelecido (1:200), em ondas na faixa de 5 ns de tempo de frente, o qual é compatível com o sistema de medição e geração disponíveis.

Considerando os pontos acima expostos e por motivo de praticidade optou-se por um fator de escala de 1:100.
3.3.1 - Plano Terra

Embora nos sistemas reais o plano de terra apresente perdas (tanto o solo como o concreto e asfalto/calçamento apresentam condutividades finitas), para este estudo considerou-se um plano ideal (resistividade nula), uma vez que esta opção é conservativa do ponto de vista de sobretensões resultantes [10], sendo utilizado um plano de cobre cujas dimensões ideais seriam infinitas. Entretanto, como isto não é possível, pode-se reduzir essas dimensões a valores práticos suficientes para a obtenção de resultados compatíveis com os simulados.

Por facilidade de confecção optou-se por um plano metálico de 1,26 m de largura, 2,25 m de comprimento e 0,6 mm de espessura. Com este comprimento é possível a simulação de linhas reais de até 180 m de comprimento, pois foi deixada uma distância de aproximadamente 25 cm entre a terminação da linha e a borda do plano para que esta não influencie a linha.

Na realidade, este plano de terra é constituído por duas chapas de cobre de 0,63 m de largura por 2,25 m de comprimento, sendo que a junção das chapas foi soldada. O plano foi montado sobre uma estrutura de madeira de 59 cm de altura para facilitar a manipulação do modelo. A influência da elevação do plano será apresentada nos resultados.

3.3.2 - Canal de Descarga

A modelagem do canal de descarga deve procurar manter as mesmas condições de propagação da corrente de retorno presentes no canal real, ou seja, as perdas, as não linearidades, a tortuosidade e a velocidade de propagação, a qual, segundo as teorias sobre descargas atmosféricas, está na faixa de 10% a 50% da velocidade da luz [12]. Entretanto, uma modelagem completa seria extremamente difícil de ser implementada, sendo que apenas a velocidade de propagação e as perdas serão consideradas.

Portanto, adotou-se como modelo para representar o canal de descarga uma linha de transmissão retilínea disposta verticalmente em
relação ao plano terra, cujos parâmetros físicos (indutância e capacitância por metro) fornecem uma velocidade de propagação na faixa anteriormente citada.

Apesar deste modelo simplificar bastante o fenômeno, estudos teóricos e experimentais indicam que os campos eletromagnéticos criados pela linha de transmissão vertical são similares aos campos criados pelas descargas reais [10].

Isto significa que podemos simular os efeitos de uma descarga atmosférica sobre uma edificação utilizando como fonte de campo uma linha de transmissão vertical percorrida por uma corrente impulsiva.

Com o objetivo de estudar a modelagem do canal de descarga, três canais distintos foram analisados neste trabalho, os quais serão descritos a seguir:

→ **Canal 1**

número de espiras por metro: 650 espiras/m
velocidade de propagação: 32,26 m/µs
materiais utilizados: tubo de pvc de 1,5 cm de diâmetro, no qual foi enrolado em hélice de passo justo um fio de cobre esmaltado de 0,5 mm de diâmetro.

→ **Canal 2**

número de espiras por metro: 650 espiras/m
velocidade de propagação: 32,26 m/µs
materiais utilizados: tubo de pvc de 1,5 cm de diâmetro, no qual foi enrolado em hélice de passo justo um fio de 60 Ø/m de 0,58 mm de diâmetro.
Canal 3

tamanho: 2,96 m

diâmetro externo: 8 mm

número de espiras por metro: 1730 espiras/m

velocidade de propagação: 24 m/μs

material utilizado: tubo de fenoite de 6 mm de diâmetro, no qual foi enrolado em hélice de passo justo um fio de cobre esmaltado de 0,57 mm de diâmetro.

Como não foi possível confeccionar um canal único, pois o tamanho máximo do tubo encontrado é de 1 m, confeccionou-se 3 sessões cujas terminações metálicas foram soldadas.

O canal 3 possui uma velocidade de propagação da onda de 24 m/μs, o que corresponde a 8% da velocidade da luz e, portanto, fora da faixa de uma descarga real (10% a 50%). Entretanto, como neste estudo não é necessário tal nível de precisão, e o material disponível para confecção do canal foi o acima citado, o canal 3 foi utilizado neste trabalho, apresentando resultados bem compatíveis com os simulados.

Um canal de descarga real possui diâmetro externo na faixa de 1,5 cm a aproximadamente 2,0 m [12]. Neste trabalho, o diâmetro dos canais de descarga utilizados equivalem a um canal real de 1,5 m para os canais 1 e 2, e 0,8 m para o canal 3, que embora sejam valores bem elevados não são absurdos.

Em todos os canais estudados o comprimento total desses forneceu canais equivalentes ao real bem menores. Entretanto, estes foram suficientes para que a reflexão da onda de corrente de retorno na extremidade superior do canal não alterasse a onda de tensão induzida.

3.3.3 - Corrente de Retorno

A teoria de Rusck, assim como outras teorias, estabelecem que a corrente de retorno é a etapa da descarga atmosférica mais importante para a tensão induzida, como já citado anteriormente. Como a velocidade de
propagação da corrente de retorno já é estabelecida na modelagem do canal, resta modelar o seu tempo de frente e de cauda; entretanto, para este estudo apenas o tempo de frente será modelado.

As ondas de corrente de uma descarga atmosférica real têm, na maioria das vezes, o seu tempo de frente na faixa de 7 μs, sendo o seu valor crítico da ordem de 1,2 μs [12]. O gerador de corrente utilizado no modelo reduzido fornece ondas de corrente cujos valores de tempo de frente estão na faixa de 47 ns. Sendo assim, aplicando-se o fator de escala, obtém-se ondas que na realidade têm o seu tempo de frente da ordem de 4,7 μs, que representam perfeitamente uma onda real.

Dessa forma, simulou-se a corrente de retorno através de uma onda de corrente de forma impulsiva, a qual foi injetada por um gerador de ondas, sendo que à medida que se propagava da terra em direção ao topo do canal, ia carregando o mesmo. Deve-se ressaltar aqui a necessidade de um circuito conformador de ondas de corrente para que se possa obter uma onda de corrente com tempo de frente adequado e sem oscilações em seus instantes iniciais, as quais influenciam muito o valor da tensão induzida na linha (apresenta um valor maior que o esperado). Entretanto, como se trata de um modelo reduzido, as dimensões desse circuito têm que ser muito pequenas para não alterarem as medições, pois caso contrário há a formação de “loops” que induzem tensão na linha. O circuito básico utilizado é apresentado na figura 2.

O gerador de ondas utilizado foi construído no C.P.D.E.E. por Coelho e Boaventura [2], tendo as seguintes dimensões: 10 cm de largura, 4 cm de altura e 8 cm de profundidade. Ele é alimentado por 3 baterias de 9 V e fornece uma onda de tensão impulsiva máxima de 590 V de amplitude com tempo de frente de aproximadamente 33 ns e tempo de semi-cauda maior que 400 ns. Esta onda de tensão é aplicada na base do canal de descarga, produzindo uma onda de corrente de descarga na faixa de 50 mA.
A extremidade aberta do canal causa uma reflexão que modifica a onda de corrente de forma bem significativa. Entretanto, o tempo em que esta reflexão ocorre é bem maior que a duração da onda de tensão induzida correspondente a essa onda de corrente. Dessa forma, esta reflexão não altera as ondas de tensão induzidas na linha.

3.3.4 - Linha Aérea

Na modelagem adotada utilizou-se uma representação unifilar para a linha aérea, que embora seja mais adequada à representação de um cabo telefônico do que de uma linha de distribuição, pode ser aplicada satisfatoriamente uma vez que o objetivo deste trabalho consiste em uma investigação básica da tensão induzida por descargas, assim como da modelagem do canal.

Considerando como valor representativo para a altura de uma linha de distribuição 7 m, modelou-se a linha do modelo a uma altura de 7 cm do plano (fator de escala 1:100). Para sustentar a linha não se utilizou postes ou
qualquer outra estrutura semelhante, mas sim fios de nylon que estavam fixados em estruturas isolantes situadas na extremidade do plano. Embora esta modelagem torne o modelo bem simplificado, não chega a comprometer o trabalho, pois espera-se que o efeito de tais estruturas seja pequeno, além de não ser considerado em nenhuma teoria [10].

O diâmetro do fio utilizado na modelagem da linha é de 0,57 mm que equivale a um fio real de 5,7 cm, sendo portanto bem maior que os condutores utilizados em linhas de distribuição. Entretanto, essa diferença não influencia o fenômeno em estudo, pois as únicas alterações resultantes são no valor da impedância característica da linha e nos fenômenos relacionados com o efeito corona que não são considerados nesse trabalho, apesar de estarem relacionados com tensão induzida [10].

3.3.5 - Localização dos Componentes do Modelo Reduzido

O plano terra, como dito anteriormente, foi montado sobre uma estrutura de madeira de 59 cm de altura. O canal de descarga foi fixado no teto do laboratório de compatibilidade eletromagnética por meio de um fio de nylon, localizando-se aproximadamente no meio do plano e bem próximo desse. O gerador de ondas de corrente foi colocado sobre o plano terra, enquanto o osciloscópio para medição de tensão induzida foi colocado sobre um carrinho de mesma altura do plano, e bem próximo ao ponto de medição da tensão. A linha aérea, conforme exposto anteriormente, foi fixada por fios de nylon, estando a 33 cm da borda do plano (figura 3).

O modelo foi implementado no laboratório de compatibilidade eletromagnética, o qual possui dimensões pequenas (6,5 m de comprimento, 7,6 m de largura, sendo que existe uma cerca metálica a 3,35 m da parede). Dessa forma, esperava-se influências significativas de reflexões nas paredes, tetos e equipamentos desse laboratório, embora não se saiba com precisão como elas interferiram. No entanto, os resultados se apresentaram bastante satisfatórios quando comparados com as simulações computacionais feitas,
embora para medições mais precisas seja recomendado um local de dimensões grandes.

3.4 Considerações

Para a medição da corrente que é injetada no canal colocou-se a ponta de prova sobre o plano, sendo a medição feita entre o circuito conformador de onda e o canal.

A medição da tensão induzida foi feita com uma ponta de prova de tensão de tal forma que a conexão da extremidade da linha (ponto de medição) e a entrada do osciloscópio foi feita a menor possível. Como a capacidade da ponta de prova de tensão é elevada (15 pF), esta deve ser considerada na simulação digital, pois influencia de forma significativa os resultados.
Como a ponta de prova de tensão foi bem aterrada, não foi preciso, neste caso específico, aterrar o osciloscópio diretamente ao plano de terra, uma vez que este ponto de terra foi suficiente para manter a carcaça do osciloscópio no mesmo potencial do plano, evitando assim a interferência direta de ondas eletromagnéticas geradas pela descarga.

3.5 Resultados Obtidos

As medições de tensão induzida realizadas no modelo reduzido implementado seguem uma configuração base, sendo que a linha possui o mesmo comprimento, a mesma terminação (casada), as mesmas distâncias com relação ao canal e às bordas do plano e a mesma altura; apenas o canal utilizado para a modelagem da descarga atmosférica varia. Em todos os casos os resultados foram comparados com simulações computacionais obtidas através do programa para cálculo de tensão induzida desenvolvido por Lopes [8], baseado na teoria de Rusck. Além disso, fez-se uma medição com o plano de cobre no solo para se poder analisar qual a influência de se trabalhar com ele sobre uma estrutura de madeira.

A figura 4 apresenta o diagrama esquemático da montagem em modelo reduzido utilizada para as medições de tensão induzida.

Em seguida serão apresentadas as ondas de corrente injetadas no canal de descarga e a comparação entre as ondas de tensão induzida medidas e simuladas para o modelo utilizando os canais 1, 2 e 3 respectivamente, citados no item 3.3.2.
Figura 4: Diagrama esquemático da montagem em modelo reduzido
Caso 1: Canal sem perdas de 1,5 cm de diâmetro - \(v = 32 \text{ m/\mu s} \)

Figura 5: Corrente aplicada na base do canal 1, com valor de pico = 46,8 mA e tempo de frente = 45 ns

Figura 6: Tensão induzida na linha, simulação x medição
Caso 2: Canal com perdas de 1,5 cm de diâmetro - fio de 60 Ω/m

Figura 7: Corrente aplicada na base do canal 2, com valor de pico = 48,5 mA e tempo de frente = 35ns, utilizando circuito conformador com R_i = 150 Ω

Figura 8: Tensão induzida na linha, simulação x medição
Figura 9: Corrente aplicada na base do canal 2, com valor de pico = 38,1 mA e tempo de frente = 40ns, utilizando circuito conformador com $R_1 = 270 \, \Omega$

Figura 10: Tensão induzida na linha, simulação x medição
Caso 3: Canal sem perdas de 0,8 mm de diâmetro - \(v = 24 \text{ m/\mu s} \)

Figura 11: Corrente aplicada na base do canal 3, com valor de pico = 46,5 mA e tempo de frente = 47ns

Figura 12: Tensão induzida na linha, simulação x medição
Comentários:

A partir da comparação entre as ondas de tensão induzida medidas e suas respectivas simulações observa-se uma ótima correspondência entre suas formas de onda. Tanto os valores de pico, quanto os tempos de frente apresentam uma correlação muito boa, sendo que as diferenças existentes são bem pequenas. Há uma diferença maior nas caudas das ondas de tensão induzida medidas e simuladas, pois não houve uma preocupação em se modelar o tempo de cauda da onda de corrente de retorno, sendo que esta possui um tempo de cauda infinito, o que não corresponde à realidade.

Nas simulações do caso 2, canal com perdas, embora não se saiba como calcular a velocidade de propagação da onda de corrente no canal, nem o valor da tensão induzida por este na linha, utilizou-se as formulações existentes para o canal sem perdas e fez-se a comparação com os valores medidos. Deve-se ressaltar aqui, que este caso foi implementado para se ter uma idéia qualitativa do comportamento de um canal modelado com perdas, sendo apenas um passo inicial para o estudo dessa modelagem. Neste caso não há reflexão da onda de corrente na extremidade superior do canal, pois quando a corrente atinge este ponto o seu valor é zero, o que parece representar bem a realidade, uma vez que estando o topo do canal real muito distante da linha, as reflexões que ocorrem nesse ponto não são representativas para o cálculo da tensão induzida. Os resultados foram muito bons.

Sendo assim, podemos concluir que esta representação do canal com perdas pode ser utilizada para a representação do canal de descargas atmosféricas, tomando o cuidado de identificarmos qual o tamanho do canal necessário para que não ocorram erros, pois o tamanho do canal a ser utilizado no modelo reduzido depende tanto do tamanho da estrutura analisada, quanto da distância entre o canal e a estrutura. Além disso podemos concluir que apenas parte do canal real contribui para a tensão que é induzida na linha, pois caso essa afirmação não fosse verdadeira não conseguiríamos resultados tão próximos aos obtidos na simulação.
No caso a seguir é apresentada uma comparação entre a onda de tensão induzida medida com o plano colocado sobre a estrutura de madeira, a 59 cm do solo, e com o plano sobre o chão. O canal utilizado foi o canal 3.

Figura 13: Corrente aplicada na base do canal 3

Figura 14: Tensão induzida na linha
Comentários:

A diferença que aparece entre as ondas de corrente injetadas no canal não têm relação com o fato do plano estar acima do solo 59 cm, ou sobre ele; essa diferença ocorreu pois o gerador não mantém a amplitude de onda, sendo que esta varia um pouco à medida que o gerador permanece em funcionamento.

Observa-se que as formas de onda da tensão induzida com o plano colocado diretamente sobre o solo ou com esse a 59 cm de altura, apresentam uma ótima correspondência. A diferença existente entre essas ondas corresponde justamente à diferença de potencial entre o plano de cobre e o piso do laboratório, tanto que quando aterrarmos o plano de cobre que está a 59 cm do solo, a onda de tensão induzida obtida é idêntica ao caso em que o plano é colocado diretamente sobre o solo.

Portanto, para efeito deste trabalho, o modelo implementado sobre as estruturas de madeira é bastante apropriado, sendo a sua manipulação muito mais fácil.

3.6 Considerações Finais

Inicialmente, utilizou-se o gerador da Tektronix modelo CFG280, que fornece uma tensão cuja amplitude máxima é de 20 V e tempo de frente da ordem de 13 ns. Como a amplitude dos ruídos de rácio frequência inerentes ao ambiente de medição são da mesma ordem de grandeza da tensão induzida medida, estes ruídos interferiram de forma significativa na onda de tensão induzida. Desta forma, tornou-se necessário a utilização de um outro gerador que fornecesse uma tensão maior injetada no canal, resultando em uma tensão induzida de amplitude mais elevada. Consequentemente, o ruído frente ao novo valor de tensão induzida tornou-se desprezível, pois sua ordem de grandeza passou a ser pequena comparada a da tensão induzida na linha.
Quando da simulação computacional da capacitância da ponta de prova de tensão utilizou-se a forma alternativa de modelagem do capacitor onde ele é tratado como um "stub line", ou seja, o capacitor é substituído por uma linha de transmissão tendo uma das extremidades conectadas ao ponto do circuito onde está o capacitor, e a outra extremidade aberta. A impedância característica e o comprimento do "stub line" são definidos a partir da constante de tempo envolvida no processo de carga do capacitor [7]. Sejam \(\tau_s \) e \(Z \) o tempo de trânsito e a impedância característica do "stub line". Para obter \(\tau_s \) faz-se:

\[
3ZC = 20 \tau_s \quad \Rightarrow \quad \tau_s = \frac{3}{20}ZC
\]

A impedância característica é obtida da seguinte forma:

\[
Z_s = \frac{\tau_s}{C}
\]

Sendo assim, os valores da impedância característica, do comprimento e tempo de trânsito do "stub line" utilizados neste trabalho foram:
\(Z = 100 \, \Omega \);
comprimento = 0,45 m;
\(\tau_s = 1,5 \, \text{ns} \).
4 Modelo Reduzido do Prédio

4.1 Introdução

Para se avaliar os campos eletromagnéticos no interior de uma edificação devido a descargas atmosféricas diretas, utilizou-se a simulação analógica que parte do modelo físico do fenômeno para a implementação de um modelo reduzido.

Sendo assim, o sistema analisado neste trabalho simula basicamente um prédio e uma descarga atmosférica direta que interage com os conjuntos de condutores dessa edificação, que neste caso, está representado por um modelo simplificado, correspondendo apenas ao SPDA (sistema de proteção contra descargas atmosféricas). Um modelo fechado complexo resultaria em uma reprodução mais fiel da situação real, mas implicaria em inconveniências para as medições e análises futuras [6].

Uma vez definida a modelagem a ser utilizada para representar o canal de descargas atmosféricas (optou-se pelo canal 1 - capítulo 3), restamos a representação da edificação, sendo que a modelagem do plano terra utilizada será a mesma descrita no capítulo anterior, ou seja, a de um plano de terra ideal (resistividade nula), representado por uma chapa de cobre de dimensões finitas ($\rho_{cobre} = 1,69 \times 10^8 \ \Omega \cdot m$).
O ponto de partida para se determinar a dimensão física do modelo reduzido e, consequentemente, o valor do fator de escala a ser empregado, são as dimensões físicas do sistema real, assim como as dimensões do local onde o modelo será implementado. Considerando um prédio real de quatro andares, ou seja, altura de 12 m a 15 m, e sendo o modelo implementado no laboratório de compatibilidade (6,5 m de comprimento, 7,6 m de largura e 3,7 m de altura), optou-se por um fator de escala de 1:30.

A tabela a seguir mostra as relações entre o fenômeno real e o modelo reduzido, referentes às principais grandezas físicas envolvidas no fenômeno em estudo, dadas pelo fator de escala [10].

Fator de Escala (FE) = 1/30 = dimensão do modelo / dimensão real

<table>
<thead>
<tr>
<th>Grandeza</th>
<th>Relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento</td>
<td>(l_{\text{modelo}} = \text{FE} \times l_{\text{real}})</td>
</tr>
<tr>
<td>Tempo</td>
<td>(t_{\text{modelo}} = \text{FE} \times t_{\text{real}})</td>
</tr>
<tr>
<td>Condutividade</td>
<td>(\sigma_{\text{modelo}} = 1/\text{FE} \times \sigma_{\text{real}})</td>
</tr>
<tr>
<td>Resistividade</td>
<td>(\rho_{\text{modelo}} = \text{FE} \times \rho_{\text{real}})</td>
</tr>
<tr>
<td>Constante Dielétrica</td>
<td>(\varepsilon_{\text{modelo}} = 1 \times \varepsilon_{\text{real}})</td>
</tr>
<tr>
<td>Permeabilidade Magnética</td>
<td>(\mu_{\text{modelo}} = 1 \times \mu_{\text{real}})</td>
</tr>
<tr>
<td>Frequência</td>
<td>(f_{\text{modelo}} = 1/\text{FE} \times f_{\text{real}})</td>
</tr>
<tr>
<td>Comprimento de Onda</td>
<td>(\lambda_{\text{modelo}} = \text{FE} \times \lambda_{\text{real}})</td>
</tr>
<tr>
<td>Velocidade de Propagação</td>
<td>(v_{\text{modelo}} = 1 \times v_{\text{real}})</td>
</tr>
<tr>
<td>Resistência</td>
<td>(R_{\text{modelo}} = 1 \times R_{\text{real}})</td>
</tr>
<tr>
<td>Reatância</td>
<td>(X_{\text{modelo}} = 1 \times X_{\text{real}})</td>
</tr>
<tr>
<td>Impedância</td>
<td>(Z_{\text{modelo}} = 1 \times Z_{\text{real}})</td>
</tr>
<tr>
<td>Capacitância</td>
<td>(C_{\text{modelo}} = \text{FE} \times C_{\text{real}})</td>
</tr>
<tr>
<td>Indutância</td>
<td>(L_{\text{modelo}} = \text{FE} \times L_{\text{real}})</td>
</tr>
</tbody>
</table>

Tabela 2: Fenômeno Real x Modelo Reduzido [10]
4.2 Sistema de Proteção contra Descargas Atmosféricas (SPDA)

A modelagem do prédio é na realidade a mesma modelagem do SPDA, pois não foram modelados nem as paredes, nem os pisos. O modelo utilizado é constituído por uma estrutura cúbica de 42 cm de aresta, sendo também incluído um “X” no topo do SPDA. As varetas de latão utilizadas na construção do modelo foram soldadas para garantir um melhor contato nas conexões (figura 15). Considerando o fator de escala adotado neste trabalho, este modelo representa uma edificação real de 13 m de altura.

Figura 15: “Lay-out” do SPDA

4.3 Localização dos Componentes do Modelo Reduzido

O plano terra foi montado diretamente sobre o solo. O canal de descarga foi fixado no teto do laboratório de compatibilidade eletromagnética por meio de um fio de nylon, localizando-se aproximadamente no meio do plano e logo acima do prédio. O gerador de ondas de corrente foi colocado sobre uma estrutura de madeira para ficar na mesma altura do prédio, sendo conectado a este através de um cabo coaxial. O osciloscópio para medição da corrente aplicada e avaliação dos campos elétricos e magnéticos foi colocado sobre um carrinho apropriado. O SPDA foi fixado no meio do plano.
Figura 16: Disposição das partes do modelo

de cobre através de quatro chapas pequenas de cobre estando uma em cada quina do SPDA (figura 16).

4.4 Sistema de Medicação Utilizado

Um dos pontos críticos da simulação analógica é o sistema de medição empregado, pois este é a interface que possibilita a observação e registro do fenômeno que está sendo investigado. Sendo assim, é muito importante que uma vez definido, o sistema a ser empregado seja calibrado e testado de forma que reduza ao mínimo os erros por ele introduzidos [10].

Quando da definição do sistema de medição, algumas características básicas inerentes a estes devem ser observadas, sendo então apresentadas a seguir.
A largura da banda de passagem do sistema, ou seja, a frequência máxima dos sinais (tensão ou corrente) que podem ser medidos sem sofrer distorções ou atenuações, é uma dessas características. Como estamos trabalhando com modelo reduzido, quando da aplicação do fator de escala, a frequência dos sinais a serem medidos tornam-se bem elevadas, sendo então fundamental que os equipamentos sejam adequados.

As ondas de corrente possíveis de serem geradas e injetadas no sistema a partir do gerador de degrau disponível para este estudo são de baixa amplitude (aproximadamente 50 mA) e, como o valor da tensão medida no interior do prédio é proporcional ao valor de pico da corrente de retorno, essas ondas são de baixa amplitude. Portanto, é necessário que o sistema de medição tenha sensibilidade para medir tais sinais.

Como a duração dos sinais a serem medidos é muito pequena (menor que 250 ns), é necessário que o sistema de medição seja capaz de visualizar esses eventos, inclusive as suas frentes de onda.

Finalmente, o sistema de medição deve ser capaz de registrar os sinais medidos e também deve ser um equipamento o mais portátil possível, já que é necessário a constante locomoção deste [10].

Baseado no exposto anteriormente e de acordo com os equipamentos disponíveis, o sistema de medição utilizado foi definido, sendo composto pelos seguintes equipamentos:

- 1 osciloscópio;
- 1 ponta de prova de tensão;
- 1 ponta de prova de corrente;
- sensores de campo elétrico e magnético.

A seguir serão apresentadas as suas principais características.

Osciloscópio

 Modelo: TDS 360
 Fabricante: Tektronix
 Banda de passagem: DC à \(\geq 200 \text{ MHz} \); DC à \(\geq 180 \text{ MHz} \) (2 mV/div)
Impedância de entrada: 1 MΩ ± 1% em paralelo com 20 pF ± 2.0 pF
Base de Tempo: 2,5 ns/div a 5 s/div (seqüência 1 - 2,5 - 5)
Sensibilidade: 2 mV/div a 10 V/div (seqüência 1 - 2 - 5)
Tempo de subida: 1,75 ns

Pontas de Prova de Tensão

Modelo: P6111B
Fabricante: Tektronix
Banda de passagem: DC a 200 MHz
Capacitância de entrada: 13 pF a 35 pF (14,1 pF nominal)
Resistência de entrada: 10 MΩ ± 1,3%
Atenuação: 10X
Tensão máxima de entrada: 300 V
Observação: possibilita casamento com outro equipamento cuja impedância de entrada seja de 1 MΩ e banda de passagem não menor que 200 MHz.

Pontas de Prova de Corrente

Modelo: P6022
Fabricante: Tektronix
Sensibilidade: 1 mA ou 10 mA para cada mV, dependendo da seleção feita no controle de sensibilidade.
Banda de passagem: 8,5 kHz a 100 MHz (1mA/mV);
935 Hz a 120 MHz (10mA/mV).
Impedância de inserção: 0,03 Ω até 1MHz; 0,2 Ω até 120 MHz

Os sensores de campos eletromagnéticos serão apresentados no capítulo seguinte.
5 Sensores de Campos Eletromagnéticos

5.1 Introdução

No caso de descargas atmosféricas diretas em uma estrutura, além das quedas de tensão ôhmicas e induativas ao longo do condutor onde circula a corrente da descarga (cabos de descida ou ferragens da edificação), são originados campos eletromagnéticos que serão acoplados aos "loops" formados pelas instalações condutoras existentes na estrutura, dando origem a correntes e tensões induzidas. Enquanto as quedas de tensão geram diferenças de potenciais consideráveis nessas estruturas por onde circula a corrente, as quais resultam em um campo elétrico correspondente, o campo magnético depende diretamente da corrente da descarga atmosférica [14].

O nível dos transitórios é usualmente elevado o suficiente para causar danos e distúrbios a equipamentos sensíveis a influências eletromagnéticas externas, sendo portanto de grande interesse em análises de EMC [15, 16, 17].

Para se analisar estas influências eletromagnéticas, normalmente as correntes e tensões induzidas em "loops" detetores, ou seja, os sensores de campos eletromagnéticos, podem ser utilizadas como um indicador da intensidade da interferência eletromagnética em diferentes posições dentro da estrutura [15], como será apresentado neste capítulo.
5.2 Sensor de Campo Elétrico

A medição de campo elétrico gerado pela descarga atmosférica foi feita por meio de uma antena ou sensor de campo elétrico especialmente desenvolvida para este propósito e adequada ao modelo reduzido implementado, de forma que não cause interferências nas linhas de campo (figura 17). Normalmente, uma antena fornece como sinal para o equipamento de medição uma tensão que é proporcional ao campo elétrico que se pretende medir, sendo então importante que a configuração dos condutores da antena não alterem essa relação de proporcionalidade. Desta forma, para a construção da antena utilizou-se uma chapa de cobre circular, a qual foi conectada a uma ponta de prova de tensão por meio de um BNC. A ponta de prova foi fixada no plano de cobre através do seu terra e ligada ao osciloscópio, de modo que a chapa de cobre circular ficasse paralela ao plano de cobre, formando um capacitor [18].

A antena construída possui as seguintes dimensões:

D = diâmetro da circunferência = 8,5 cm
d = 4,6 cm

Figura 17: Detalhe da antena
Antes de se utilizar a antena para a medição do campo elétrico, foi necessário fazer a sua calibração, a fim de se determinar o valor da constante dessa antena. Sendo assim, apresentaremos a seguir uma breve discussão a esse respeito.

5.2.1 - Calibração da Antena

Em muitos casos, para se calibrar sensores de campos elétricos, utilizam-se placas planas metálicas, sejam elas de forma retangular ou circular (figura 18); entretanto, alguns pontos como distância máxima entre as placas, campos parasitas e proximidade de objetos devem ser observados. Para se evitar qualquer problema relacionado com campos elétricos parasitas utilizam-se as células TEM, as quais devido a sua construção totalmente blindada não possibilitam que esses campos causem distúrbios na calibração. Entretanto, essas células apresentam desvantagens como o alto custo e o tamanho limitado, de tal forma que apenas sensores de tamanho pequeno podem ser calibrados nestas células [19].

![Figura 18: Arranjo para calibração de campo elétrico. Placas Planas Circulares [19].](image-url)
O primeiro ponto que devemos levar em consideração é a máxima distância entre as placas, pois caso esta seja muito grande o campo elétrico na área central do arranjo para a calibração será menor que o valor de referência U/a, resultando em um erro de calibração significativo. Este efeito foi calculado para sensores de placas circulares, sendo que o erro de calibração é menor que 1% se a distância entre as placas é menor que metade do seu diâmetro. Embora para placas retangulares não se possa fazer esse cálculo, o mesmo resultado é válido [19].

Outro ponto a ser considerado é a fonte de potência. Se a fonte é simétrica em relação ao potencial de terra, a homogeneidade do campo elétrico é muito maior que no caso de fonte assimétrica, e consequentemente tem-se uma calibração de campo elétrico bem mais precisa [19].

Além desses fatores, qualquer objeto grande, metálico ou ferromagnético, próximo ao sistema de calibração deve ser removido, pois eles podem influenciar o resultado da calibração [19].

No caso em estudo a calibração do sensor de campo elétrico foi feita através de um arranjo de placas retangulares planas, sendo uma placa de alumínio e a outra de cobre, ambas de 2m x 1m. O arranjo foi colocado sobre um suporte isolante de madeira a 59 cm do solo, sendo que a placa de cobre foi bem aterrada. A distância entre as placas foi de 26,5 cm, ou seja, a $< D/2 = 0,5 \text{ m}$ (figura 19). O gerador utilizado para se fazer a calibração foi o da Tektronix modelo CFG280, sendo que a amplitude máxima de saída é igual a 20 V_{pp}, a impedância de saída é igual a 50 Ω e a faixa de frequência vai de 0,1Hz a 11 MHz. Entretanto, esse método de calibração é para campos de baixa frequência, o que não é o nosso caso. Porém, como ainda não tivemos acesso a um método para alta frequência, ou seja, a célula TEM, optamos pelo arranjo de placas retangulares planas, mesmo sabendo que isto nos levaria a erros na calibração. Além disso, não houve preocupação nem com a fonte de potência, nem com a proximidade de objetos, uma vez que já não teríamos precisão na calibração. Mesmo com todos esses problemas as medições realizadas apresentaram bons resultados, como pode ser visto a seguir.
Figura 19: Montagem para calibração da antena
→ Curvas Obtidas na Calibração

I - Freqüência = 3 kHz

Figura 20: Curva1 - V_{aplicado} / d (V/m), curva2 - $V_{\text{medido}} \times 10^{-2}$ (V) $\Rightarrow k = 98.29$

II - Freqüência = 100 kHz

Figura 21: Curva1 - V_{aplicado} / d (V/m), curva2 - $V_{\text{medido}} \times 10^{-2}$ (V) $\Rightarrow k = 95.23$
III - Freqüência = 1 MHz

Figura 22: Curva1 - $V_{aplicado} / d$ (V/m), curva2 - V_{medido} (10^{-2}V) $\Rightarrow k = 94,46$

VII - Freqüência = 10 MHz

Figura 23: Curva1 - $V_{aplicado} / d$ (V/m), curva2 - V_{medido} (10^{-2}V) $\Rightarrow k = 88,15$
De acordo com os resultados apresentados anteriormente, optamos por usar uma constante para esta antena de valor igual a 95.

5.3 Sensor de Campo Magnético

Quando da investigação da influência do campo magnético gerado por uma descarga atmosférica dentro de uma edificação, diferentes fatores devem ser levados em consideração, entre eles as dimensões do “loop”, aqui representado pelo sensor de campo magnético, e a sua posição na estrutura.

Estudos já realizados indicam que tanto o tamanho do “loop” quanto a sua posição dentro da estrutura influenciam muito o valor da tensão que é induzida nele [15, 16, 17]. Outro ponto importante a ser observado é o fato de que o “loop” deve estar aterrado [16], sendo que todo elemento condutor do arranjo deve estar direta ou indiretamente conectado ao mesmo sistema de aterramento [15, 16].

O sensor de campo magnético utilizado neste trabalho foi construído no laboratório de compatibilidade, consistindo de três bobinas, sendo que cada uma fornece o campo em uma direção. Para atingir a sensibilidade desejada, as bobinas utilizadas normalmente têm várias espiras [18]; sendo assim, cada bobina do sensor tem 2500 espiras, sendo que as suas dimensões médias são de aproximadamente 1,4 cm de largura e 1,4 cm de altura. Em uma das extremidades da bobina conectou-se um resistor de valor igual a 1,8 kΩ, a fim de atenuar as oscilações presentes na onda de tensão induzida. A ponta de prova de tensão foi conectada, por um lado, ao resistor e à outra extremidade da bobina e, por outro lado, ao osciloscópio; o terra da ponta de prova e uma das extremidades do sensor foram conectados ao plano de terra, neste caso representado pela chapa de cobre, ficando, assim, conectados ao mesmo sistema de aterramento. A posição do “loop” dentro da edificação foi alterada, conforme será visto no capítulo de resultados.
5.3.1 - Calibração do Sensor de Campo Magnético

Assim como foi necessário calibrar a antena utilizada na medição do campo elétrico, também deve-se fazer a calibração do sensor de campo magnético o qual será utilizado para avaliar o campo magnético dentro de uma edificação. Neste caso, utiliza-se um sistema de calibração o qual é carregado com uma corrente conhecida, e cujas dimensões geométricas são bem definidas, originando um campo magnético que pode ser calculado com precisão. A tabela a seguir mostra os sistemas mais comumente utilizados na calibração de sensores de campos magnéticos [19].

<table>
<thead>
<tr>
<th>Arranjos para Calibração do Campo Magnético</th>
<th>Valores de Referência do Campo Magnético (no centro do arranjo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobina axial homogênea</td>
<td>$H_z(0,0) = \frac{NI}{l \sqrt{1 + (2a/l)^2}}$</td>
</tr>
<tr>
<td>Condutor cilíndrico simples</td>
<td>$H_z(0,0) = \frac{NI}{2a}$</td>
</tr>
<tr>
<td>Bobina padrão de Helmholtz</td>
<td>$H_z(0,0) = \frac{0.716NI}{2a}$</td>
</tr>
<tr>
<td>Bobina quadrática de Helmholtz</td>
<td>$H_z(0,0) = \frac{1.629NI}{2a}$</td>
</tr>
</tbody>
</table>

Tabela 3: Arranjos para calibração de campo magnético [19]
A bobina "axial" além de possuir uma boa homogeneidade do campo, gera campos magnéticos de valores bem elevados. Entretanto, pode ser difícil posicionar o sensor de campo no centro da bobina. Em alguns casos um simples condutor em linha reta também pode ser utilizado para se fazer a calibração, sendo que sua homogeneidade de campo é suficiente apenas para grandes distâncias do condutor [19].

As fórmulas fornecidas como valores de referência não levam em consideração o tamanho dos sensores, sendo que apenas nos casos em que esses são pequenos comparados com todo o sistema de calibração é que se consegue uma calibração precisa do campo magnético. Além disso, deve-se ressaltar que os valores de referência apresentados na tabela anterior são válidos apenas no ponto central do arranjo de calibração. Dependendo do tamanho do sensor de campo a ser calibrado, e da homogeneidade do campo magnético do sistema de calibração, erros consideráveis de calibração podem ocorrer [19].

O sistema de calibração de campo magnético mais comumente utilizado é a bobina de Helmholtz, a qual consiste de duas bobinas circulares paralelas, sendo que a distância entre os eixos é igual ao raio da bobina. Ela tem como vantagem uma larga faixa de homogeneidade de campo, e como desvantagens o alto custo e o seu tamanho. Já uma bobina simples de forma arredondada é muito mais fácil de ser construída, possui um custo bem menor e pode ser facilmente manuseada. Porém, a região em que o campo magnético permanece constante é bem menor. Mesmo assim, para sensores magnéticos pequenos este sistema de calibração é adequado [19].

No caso em estudo a calibração do sensor de campo magnético foi feita através de um arranjo de condutores circulares. Entretanto, esse método de calibração é para campos de baixa frequência, o que não é o nosso caso. Porém, como ainda não tivemos acesso a um método para alta frequência, ou seja, a célula TEM, optamos pelo arranjo de condutores circulares, mesmo sabendo que incorreríamos em erros.

Tomando como base o trabalho desenvolvido por Kohler [19], construímos um arranjo circular para calibração do sensor de campo
magnético, de material isolante e raio igual a 0,5 m, sendo que o condutor de 0,56 mm de diâmetro foi enrolado em volta do arranjo 50 vezes, de modo que garantisse um valor de tensão induzida maior que 10 mV, pois esta é a menor escala do osciloscópio. O arranjo foi colocado sobre um suporte isolante de madeira a aproximadamente 60 cm do solo, sendo que o sensor estava localizado no centro do arranjo (figura 24).

Assim como na calibração do sensor de campo elétrico, não houve preocupação com a proximidade de objetos, nem com a fonte de potência, que neste caso deveria ser equipada com amplificadores muito potentes e caros, pois na geração de campos magnéticos na faixa de kHz, conseguiríamos injetar correntes da ordem de ampères, o que forneceria uma medição da tensão induzida no “loop” bem mais precisa [19].

Embora não esteja representado na figura abaixo, os pontos de terra do gerador, das pontas de prova e do sensor, estavam conectados entre si através de uma cordoalha, que por sua vez estava conectada ao terra do laboratório. Também neste caso utilizou-se o gerador da Tektronix modelo CFG280.

Figura 24: Montagem para Calibração do Sensor de Campo Magnético
Ao contrário dos resultados obtidos na calibração do campo elétrico, as medições realizadas para o campo magnético não apresentaram bons resultados, sendo que só de trocar a ponta de prova de tensão conectada ao sensor de campo magnético, há uma alteração considerável na medição da tensão induzida no sensor, conforme será apresentado neste capítulo.
→ Curvas Obtidas na Calibração

1 - Freqüência = 5 kHz

Figura 25: Corrente aplicada no arranjo de calibração em função do tempo

Figura 26: Tensão induzida no sensor de campo magnético em função do tempo
II - Frequência = 71 kHz

Figura 27: Corrente aplicada no arranjo de calibração em função do tempo

Figura 28: Tensão induzida no sensor de campo magnético em função do tempo
III - Freqüência = 1 MHz

Figura 29: Corrente aplicada no arranjo de calibração em função do tempo

Figura 30: Tensão induzida no sensor de campo magnético em função do tempo
IV - Frequência = 7 MHz

Figura 31: Corrente aplicada no arranjo de calibração em função do tempo

Figura 32: Tensão induzida no sensor de campo magnético em função do tempo
A tabela a seguir mostra os valores medidos da corrente aplicada e da tensão induzida no sensor de campo magnético em toda a faixa de frequência, bem como os valores correspondentes calculados para "H" (intensidade de campo magnético) e para a tensão induzida. A formulação utilizada para os cálculos é apresentada a seguir:

\[
\vec{H} = \frac{NI}{2a}
\]

onde: \(N = 50 \) = número de espiras;
\(I = \) corrente aplicada, em A;
\(a = 0,5 \) = raio do arranjo utilizado na calibração, em m.

\[
V_{\text{ind}} = 2\pi f \cdot N_{\text{int}} \cdot \mu \cdot H \cdot A
\]

onde: \(f = \) frequência;
\(N_{\text{int}} = 2500 \) = número de espiras do sensor de campo magnético;
\(\mu = \) permeabilidade magnética do meio;
\(A = \) área do sensor de campo magnético.

<table>
<thead>
<tr>
<th>Freqüência (Hz)</th>
<th>Corrente (A)</th>
<th>(H) (A/m)</th>
<th>(V_{\text{calculado}}) (V)</th>
<th>(V_{\text{medido}}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00E+03</td>
<td>1,09E-02</td>
<td>0,547</td>
<td>0,002</td>
<td>4,99E-02</td>
</tr>
<tr>
<td>5,01E+03</td>
<td>1,48E-02</td>
<td>0,742</td>
<td>0,014</td>
<td>6,51E-02</td>
</tr>
<tr>
<td>1,00E+04</td>
<td>1,29E-02</td>
<td>0,643</td>
<td>0,025</td>
<td>6,68E-02</td>
</tr>
<tr>
<td>5,00E+04</td>
<td>4,60E-03</td>
<td>0,230</td>
<td>0,044</td>
<td>9,41E-02</td>
</tr>
<tr>
<td>7,17E+04</td>
<td>3,13E-03</td>
<td>0,157</td>
<td>0,043</td>
<td>6,88E-01</td>
</tr>
<tr>
<td>1,01E+05</td>
<td>2,09E-03</td>
<td>0,105</td>
<td>0,041</td>
<td>1,32E-02</td>
</tr>
<tr>
<td>5,00E+05</td>
<td>1,75E-03</td>
<td>0,088</td>
<td>0,169</td>
<td>4,27E-02</td>
</tr>
<tr>
<td>1,01E+06</td>
<td>4,02E-03</td>
<td>0,201</td>
<td>0,782</td>
<td>2,96E-02</td>
</tr>
<tr>
<td>3,01E+06</td>
<td>1,18E-02</td>
<td>0,590</td>
<td>6,862</td>
<td>4,39E-02</td>
</tr>
<tr>
<td>5,01E+06</td>
<td>2,27E-02</td>
<td>1,134</td>
<td>21,964</td>
<td>5,26E-02</td>
</tr>
<tr>
<td>7,00E+06</td>
<td>3,23E-02</td>
<td>1,615</td>
<td>43,750</td>
<td>4,30E-02</td>
</tr>
<tr>
<td>1,00E+07</td>
<td>4,08E-02</td>
<td>2,041</td>
<td>78,947</td>
<td>6,21E-02</td>
</tr>
</tbody>
</table>
Como pode ser visto na tabela anterior, os valores de tensão induzida no sensor medidos e calculados são bem distintos. Isto se deve ao fato de que há uma grande influência da ponta de prova de tensão utilizada para a medição. Apenas para comprovar esta afirmação, será apresentado a seguir medições da tensão induzida pelo campo magnético no interior do prédio, cujos procedimentos serão apresentados no capítulo seguinte, utilizando três pontas de prova de tensão distintas, cujas características estão apresentadas abaixo:

Pontas 1 → Tektronix - P6111B
- Banda de passagem: DC a 200 MHz
- Capacitância de entrada: 13 pF a 35 pF (14,1 pF nominal)
- Resistência de entrada: 10 MΩ ± 1,3%
- Atenuação: 10X

Pontas 2 → Tektronix - P6109B
- Banda de passagem: DC a 100 MHz
- Capacitância de entrada: 13 pF nominal
- Resistência de entrada: 10 MΩ ± 1,3%
- Atenuação: 10X

Pontas 3 → Universal - P1001S
- Banda de passagem: DC a 6 MHz (1:1), DC a 100 MHz (1:10)
- Capacitância de entrada: 100 pF (1:1), 15pF (1:10)
- Resistência de entrada: 1 MΩ (1:1), 9 MΩ ± 1% (1:10)
- Atenuação: 1X ou 10X, dependendo da seleção feita no controle de sensibilidade. Nesta medição, a ponta foi selecionada como (1:1).
Figura 33: Tensão induzida no sensor de campo magnético em função do tempo, análise da influência da ponta de prova de tensão.

Como podemos ver, há uma influência considerável da ponta de prova de tensão no valor da tensão induzida medida, sendo que para medições mais precisas este problema deve ser sanado.

Sendo assim, foram feitas simulações no SPICE, onde se levou em consideração os parâmetros da ponta de prova de tensão, sendo que o valor da tensão aplicada no circuito de simulação é o valor da tensão induzida calculada na tabela anterior. Desta forma, o valor obtido na simulação poderá ser comparado com o valor de tensão medido, sem incorrer em grandes erros. O circuito utilizado na simulação é apresentado abaixo:

Figura 34: Circuito utilizado na simulação do SPICE.
onde: \(L_1 \) = indutância do sensor de campo magnético;
\(C_1 \) = capacitância do sensor de campo magnético;
\(R \) = resistor conectado ao sensor;
\(C_2 \) = capacitância da ponta de prova de tensão;
\(R_2 \) = resistência da ponta de prova de tensão;
\(V \) = tensão aplicada.

Os valores de pico da tensão induzida obtidos na simulação são apresentados na tabela a seguir:

<table>
<thead>
<tr>
<th>Frequência (Hz)</th>
<th>(V_{medida}) (V)</th>
<th>(V_{calculado}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00E+03</td>
<td>4,99E-02</td>
<td>2,23E-03</td>
</tr>
<tr>
<td>5,01E+03</td>
<td>6,51E-02</td>
<td>3,60E-02</td>
</tr>
<tr>
<td>1,00E+04</td>
<td>6,68E-02</td>
<td>7,93E-01</td>
</tr>
<tr>
<td>5,00E+04</td>
<td>9,41E-02</td>
<td>8,50E-03</td>
</tr>
<tr>
<td>7,17E+04</td>
<td>6,88E-01</td>
<td>5,27E-03</td>
</tr>
<tr>
<td>1,01E+05</td>
<td>1,32E-02</td>
<td>3,61E-03</td>
</tr>
<tr>
<td>5,00E+05</td>
<td>4,27E-02</td>
<td>2,80E-03</td>
</tr>
<tr>
<td>1,01E+06</td>
<td>2,96E-02</td>
<td>6,34E-03</td>
</tr>
<tr>
<td>3,01E+06</td>
<td>4,39E-02</td>
<td>1,90E-02</td>
</tr>
<tr>
<td>5,01E+06</td>
<td>5,26E-02</td>
<td>3,50E-02</td>
</tr>
<tr>
<td>7,00E+06</td>
<td>4,30E-02</td>
<td>4,60E-02</td>
</tr>
<tr>
<td>1,00E+07</td>
<td>6,21E-02</td>
<td>6,50E-02</td>
</tr>
</tbody>
</table>

A seguir está apresentado o gráfico obtido com os valores da tabela anterior.
Figura 35: Tensão induzida em função da frequência, simulação x medição

Como podemos observar, a forma de onda é praticamente a mesma, sendo que houve apenas um deslocamento no ponto onde ocorreu a ressonância do circuito. Entretanto, como os valores utilizados na simulação não são precisos, e uma pequena mudança nesses valores altera de forma significativa a frequência de ressonância, o gráfico anterior pode ser considerado bem razoável.
6 Resultados Obtidos

6.1 Campo Elétrico

Após a calibração da antena foram feitas as medições da corrente aplicada na base do canal e do campo elétrico no interior do prédio, no modelo reduzido implementado utilizando o canal (figura 36). A seguir são apresentadas as ondas obtidas:

![Diagrama de campo elétrico](image)

Figura 36: Modelo reduzido utilizando o canal
Figura 37: Corrente aplicada na base do canal em função do tempo.

Figura 38: Tensão induzida na antena em função do tempo.

Campos elétricos = \(V \times k = 95 \).
Tomando o resultado anterior como base foi realizado um estudo relativo à segunda etapa desse trabalho, ou seja, simular a presença do canal de descarga a fim de se testar de maneira real um sistema de proteção contra descargas atmosféricas de uma edificação.

Boa parte da literatura considera que a manutenção dos valores de corrente nos condutores de descida, reproduz as condições de campo eletromagnético no interior do prédio [3, 6]. Entretanto, como será apresentado a seguir, a representação da presença do canal de descarga é fundamental, sendo que apenas a manutenção da corrente nos condutores de descida não é suficiente para reproduzir os efeitos de um descarga atmosférica.

Desta forma, foram feitas medições procurando uma alternativa a essa questão. Uma solução viável, e que será explicada mais adiante, é a disposição de arranjos de resistores circundando o SPDA, sendo o gerador de corrente conectado entre o SPDA e a conexão destes arranjos; cada um dos arranjos de resistores é conectado diretamente à terra (neste caso, ao plano de cobre). Para se avaliar a validade dessa alternativa, realizou-se várias medições com quatro arranjos igualmente espaçados, sendo feita uma comparação com os resultados obtidos utilizando o canal de descarga atmosférica, o que vem mostrar a viabilidade da utilização deste arranjo para a simulação do canal de descarga.

A seguir será apresentado o caminho que levou ao arranjo utilizado na simulação do canal, bem como serão analisadas algumas variáveis como a altura, a distância e a posição que os arranjos são colocados em relação ao prédio.

Inicialmente, utilizou-se quatro condutores envolvendo o SPDA, os quais eram condutores de vareta de latão, e estavam isolados do plano de cobre. Entretanto, tanto a corrente medida quanto a onda de campo elétrico medido, embora tenham apresentado a mesma forma da corrente e do campo utilizando o canal, possuíam uma amplitude muito maior (aproximadamente o dobro para a corrente e 7 vezes para o campo).
Em seguida, aterrarmos cada um dos condutores com R = 3,06 kΩ (figura 39) e, embora continuassem apresentando a mesma forma de onda, a amplitude das ondas de corrente e campo continuaram muito maiores que as do canal (corrente - 3 vezes, campo - 5,5 vezes). Então, optamos por aumentar o valor dos resistores de aterramento, para ver se o valor da corrente diminuía, sendo que cada um dos condutores foi aterrado com R = 13 kΩ; comparando os valores da corrente e do campo elétrico desse caso com os obtidos quando R = 3,06 kΩ, vimos que eles permaneceram praticamente os mesmos do caso anterior, não sofrendo influência devido à alteração do valor do resistor de aterramento. Sendo assim, como variamos consideravelmente o valor de R e quase não houve alteração no valor da corrente, e o campo elétrico permaneceu o mesmo, suspeitamos da existência de um acoplamento capacitivo entre os condutores que circundam o prédio e os condutores do próprio SPDA, o que nos levaria à conclusão que o circuito estaria se “fechando” pelo acoplamento capacitivo e não estaria “enxergando” os resistores.

Para comprovar nossas hipóteses, conectamos um resistor entre o circuito conformador e o arranjo de condutores (figura 40), sendo analisados
dois casos, condutores aterrados ou isolados. Primeiramente, conectamos um resistor de valor igual a 770 Ω, porém a corrente continuou muito elevada em ambos os casos. Após algumas tentativas, chegamos à conclusão que o valor desse resistor deve ser aproximadamente igual à impedância do canal de descarga. Logo, apresentaremos a seguir o cálculo dessa impedância.

- Segundo Kuffel [20], a capacitância de um cilindro disposto verticalmente em relação ao plano terra é dada por:

\[
C = \frac{2\pi l}{\ln \left(\frac{2l}{d} \sqrt{\frac{4s + l}{4s + 3l}} \right)}
\]

para \(s << l \), tem-se:

\[
C = \frac{2\pi \varepsilon l}{\ln \left(\frac{1.15l}{d} \right)} \quad (F)
\]

onde \(s, l \) e \(d \) estão definidos na figura a seguir, sendo:

\(l = 3 \text{ m}; \)
\(d = 0.15 \text{ m}; \)
\(s = 0.42 \text{ m}. \)
Figura 41: Configuração para determinação da capacitância do canal para a terra.

O valor da capacitância do canal é, então, dado por:

\[C = 10,2 \, \text{pF/m} \]

Devido à disposição vertical do canal de descarga a capacitância deste para a terra não é uniforme, diminuindo à medida que se afasta do plano terra. Sendo assim, o valor calculado para a capacitância por metro do canal é um valor médio desta capacitância.

- Segundo Kraus [21], a indutância de um solenoíde é dada por:

\[L = \frac{\mu N^2 A}{l} \quad (\text{H}) \]

onde: \(\mu \) - permeabilidade magnética do meio, H/m
\(l \) - comprimento do solenoíde, m
\(N \) - número de espiras do solenoíde, adimensional
\(A \) - área da espira, m²

para o modelo do canal em estudo, tem-se:

\(N = 1950 \) espiras
\(A = 1,77 \times 10^{-4} \, \text{m}^2 \)

logo:

\[L = 93,9 \, \mu \text{H/m} \]

A impedância do canal pode ser então calculada por:
\[Z = \sqrt{\frac{L}{C}} \quad \Rightarrow \quad Z = 3.029,67 \ \Omega \]

A seguir são apresentadas as formas de onda de tensão e corrente aplicadas no canal, a fim de compararmos o valor da impedância calculada acima, com a impedância do canal medida:

→ Tensão Aplicada na Base do Canal

Valor de pico da tensão = 157,1 V
Corrente Aplicada

![Graph](image)

Valor de pico da corrente = 60,9 mA

Logo, a impedância medida é dada por:

\[Z = \frac{157,1}{60,9 \times 10^{-3}} = 2579,64 \, \Omega \]

Há uma diferença entre os valores calculado e medido, o que pode ser explicado pelo fato de usarmos fórmulas aproximadas para o cálculo e pelos erros inerentes à medição. Sendo assim, conectamos um resistor de valor igual a 3,25 kΩ entre o circuito conformador e os condutores do arranjo, que nos possibilitou uma medição de corrente igual à corrente do canal, tanto para o caso dos condutores aterrados, quanto para os condutores isolados. Logo, podemos concluir que realmente há um acoplamento capacitivo entre os condutores do arranjo e o prédio.

Entretanto, o campo elétrico, para o caso de condutores aterrados, ficou bem menor que o campo do canal (2,8 vezes), sendo que para os condutores isolados o campo continuou muito maior, aproximadamente igual aos valores que vinham apresentando anteriormente. Sendo assim, pudemos confirmar que apenas a manutenção da corrente nos condutores de
descida não é suficiente para reproduzir as condições de campo eletromagnético no interior do prédio.

Como o campo elétrico está diretamente relacionado com a tensão, e como a queda de tensão estava ficando totalmente concentrada no resistor, ou seja, acima do prédio, desenvolvemos um arranjo formado pela associação série de vários resistores, de tal forma que a resistência de cada arranjo fosse aproximadamente igual a 4 vezes a impedância do canal, ou seja, a resistência equivalente de 4 arranjos (conectados paralelamente) nos forneceria um valor próximo à impedância do canal. Tanto para o caso dos arranjos de resistores aterrados como isolados, as correntes apresentaram formas e amplitudes de acordo com a corrente do canal. Já o campo elétrico só apresentou bons resultados (apenas um pouco maior que o campo utilizando o canal) para o arranjo de resistores aterrados, sendo muito maior no arranjo de resistores isolados. Sendo assim, descartamos a possibilidade de utilizarmos arranjos isolados para a simulação de um canal de descarga, no que diz respeito a campo elétrico. Desta forma, cada arranjo que envolve o SPDA foi formado pela associação série de 50 resistores de 270 Ω, o que fornece um valor de \(R = 13.5 \, kΩ \) por arranjo, resultando em um \(R_{equivalente} \) para

![Diagrama](attachment:image.png)

Figura 44: Modelo com 4 arranjos de resistores envolventes.
o conjunto de arranjos igual a 3,38 kΩ, estando estes diretamente aterrados ao plano de cobre (figura 44).

Entretanto, devido ao acoplamento capacitivo analisado anteriormente, há alteração do valor do campo elétrico medido no interior do SPDA, se distribuímos os resistores até o plano de cobre ou se os distribuímos até uma certa altura (esta altura foi determinada experimentalmente), e depois conectamos um fio de cobre que termina o percurso até o plano (a segunda opção fornece um valor de campo um pouco menor). Neste trabalho, a última opção é que nos forneceu um valor de campo elétrico mais próximo do obtido utilizando o canal de descarga.

O próximo ponto importante a ser observado, e que influencia de forma significativa o valor do campo elétrico no interior do SPDA, é a distância em que os arranjos são colocados deste, assim como a altura. Pode-se observar que quanto mais próximos os arranjos estão do SPDA, maior é o valor do campo elétrico medido. No caso em estudo os arranjos de resistores foram colocados a uma distância de 13 cm, o que equivale a 3,9 m num caso real, e a uma altura de 15 cm (equivalente a 4,5 m).

Por último deve-se ressaltar a influência da posição desses arranjos, ou seja, se eles estão paralelos aos condutores do SPDA ou não. Pode-se observar que o campo medido foi maior no caso em que os arranjos de resistores estavam paralelos ao SPDA. Neste trabalho optou-se pela configuração de arranjos transversais (figura 45).
Figura 45: Posições dos arranjos: (a) transversais. (b) paralelos

A seguir serão apresentados os resultados obtidos utilizando a configuração anteriormente explicada para simular o canal de descarga.
Figura 46: Corrente aplicada em função do tempo

Figura 47: Tensão induzida na antena em função do tempo.

Campo elétrico = V \times k=95.
6.1.1 - Considerações Finais

Na construção dos arranjos, os resistores foram soldados e depois fixados em uma estrutura de PVC, a qual foi utilizada para sustentar os mesmos.

Há acoplamento capacitivo entre os arranjos de resistores que envolvem o SPDA e os condutores do próprio SPDA, os quais são determinantes no valor do campo elétrico. Desta forma foi necessário distribuir os resistores ao longo do percurso, pois se os colocássemos concentrados, isto é, se aterrássemos os condutores com \(R = 13,5 \, \text{k}\Omega \), o circuito se fecharia através do acoplamento capacitivo, ignorando assim, os resistores. Além disso, devido a esse acoplamento capacitivo, também há alteração do valor do campo elétrico medido no interior do SPDA, se distribuímos os resistores até o plano de cobre ou se os distribuimos até uma certa altura (esta altura foi determinada experimentalmente) e depois conectamos um fio de cobre que termina o percurso até o plano, sendo que a última opção é que nos forneceu a modelagem correta do canal. Por outro lado, se conectássemos um único resistor de valor igual à impedância do canal entre o circuito conformador e os condutores, sendo estes construídos com fio de cobre ou vareta de latão, praticamente toda a queda de tensão se concentraria nesse ponto e, portanto, como o campo elétrico depende da tensão, essa configuração não representa o canal no que diz respeito a campo elétrico.

A diferença entre as ondas de corrente aplicadas entre o canal e o SPDA e entre o arranjo implementado e o SPDA ocorrem pois o gerador de tensão não mantém a sua amplitude, sendo difícil conseguir exatamente o mesmo valor em duas medições distintas. Como podemos observar no gráfico do campo elétrico medido, os valores obtidos para o canal e para o arranjo de resistores foi praticamente o mesmo, principalmente quando consideramos o fato de que as correntes injetadas não foram idênticas. Sendo assim, pode-se concluir que o arranjo utilizado neste trabalho pode
ser empregado para representar o canal de descargas atmosféricas, no que diz respeito a campo elétrico.

6.2 Campo Magnético

Após a calibração do sensor de campo magnético foram feitas as medições da corrente aplicada na base do canal e da tensão induzida no sensor, o qual foi colocado em duas posições distintas, na quina do prédio e no meio deste. Em seguida foram feitas as medições utilizando quatro arranjos de resistores anteriormente descritos, com o objetivo de verificarmos se este conjunto de arranjos também reproduz as condições de campo magnético de um canal de descarga. A seguir serão apresentadas as ondas obtidas:
6.2.1 - Sensor Localizado Próximo à Quina do Prédio

→ Medições Filtradas

Figura 48: Corrente aplicada em função do tempo

Figura 49: Tensão induzida no sensor de campo magnético.
→ Medicações não Filtradas

Figura 50: Corrente aplicada em função do tempo

Figura 51: Tensão induzida no sensor de campo magnético.
6.2.2 - Sensor Localizado no Meio do Prédio

→ Medicações Filtradas

Figura 52: Corrente aplicada em função do tempo

Figura 53: Tensão induzida no sensor de campo magnético.
→ Medicações não Filtradas

Figura 54: Corrente aplicada em função do tempo

Figura 55: Tensão induzida no sensor de campo magnético.
6.2.3 - Considerações

Da mesma forma que no caso do estudo do campo elétrico, a diferença entre as ondas de corrente aplicadas entre o canal e o SPDA e entre o arranjo implementado e o SPDA, presentes em alguns gráficos anteriores, ocorrem pois o gerador de tensão não mantém a sua amplitude, sendo difícil conseguir o mesmo valor exato em duas medições distintas.

De acordo com o gráfico da tensão induzida no sensor de campo magnético, os valores de tensão induzida obtidos para o canal e para o arranjo de resistores foram bem próximos, principalmente nos casos em que as correntes injetadas foram praticamente iguais, sendo que nos demais casos a maior diferença é devido às diferentes correntes injetadas, e não à ineficiência do arranjo utilizado para representação do canal. Deste modo, pode-se concluir que o arranjo utilizado neste trabalho também pode ser empregado para representar o canal de descargas atmosféricas, no que diz respeito a campo magnético.

6.2.4 - Influência do Campo Magnético na Tensão Induzida

A fim de verificarmos qual a influência do campo magnético na tensão induzida no sensor de campo magnético, foi feito um arranjo de quatro condutores circundando o prédio, mantendo-se as mesmas distâncias do prédio, só que agora um resistor equivalente à impedância do canal de descarga, \(R_{\text{equivalente}} = 3,38 \, \text{k}\Omega \), foi conectado entre o circuito conformador de onda e o ponto de conexão dos 4 condutores, formados cada um por um fio de 0,56 mm de diâmetro, fixados em uma estrutura de PVC, a qual foi utilizada para sustentar os mesmos. O sensor de campo magnético foi localizado no meio do prédio. A seguir serão apresentados os resultados.
→ Medidas Filtradas

Figura 56: Corrente aplicada em função do tempo

Figura 57: Tensão induzida no sensor de campo magnético.
Analisando os gráficos anteriores, podemos observar que para praticamente a mesma corrente injetada, o valor da tensão induzida no sensor de campo magnético devido apenas ao campo magnético é muito menor, aproximadamente 16% do valor devido ao campo elétrico e magnético.
7 Conclusões

De acordo com os resultados obtidos com o canal com perdas, parece-nos que este pode ser usado para a representação do canal de descargas atmosféricas, tomando o cuidado de identificarmos qual o tamanho do canal necessário para que não ocorram erros. Isto pode ser observado pois quando o canal foi utilizado no estudo de tensão induzida em linhas de transmissão aéreas, o seu comprimento foi suficiente. Entretanto, quando este mesmo canal foi utilizado para o estudo da edificação, cujo modelo implementado é muito maior que a linha, o seu comprimento não foi suficiente. Isto nos leva a concluir que:

- O tamanho do canal a ser utilizado no modelo reduzido depende do tamanho da estrutura analisada, e também da distância entre o canal e a estrutura;

- Apenas parte do canal real contribui para a tensão que é induzida na linha.

Pelo que foi apresentado pode-se concluir que o objetivo básico do trabalho, ou seja, o estabelecimento de um modelo reduzido para estudo da interação de descargas atmosféricas diretas e o SPDA foi satisfatoriamente atingido.

Para a representação dos efeitos do canal de descarga atmosférica, são necessários tanto o campo elétrico quanto o campo magnético, sendo que esta representação é conseguida através de um conjunto de quatro arranjos de resistores igualmente espaçados circundando o prédio, aterrados ao plano de terra. O valor da resistência equivalente desse conjunto de
arranjos deve ser aproximadamente igual à impedância do canal de descarga, sendo também necessário observar e definir a altura, a distância e a posição que estes arranjos devem ser colocados em relação ao prédio.

A tensão induzida no sensor de campo magnético colocado no interior de uma edificação depende muito mais do campo elétrico, sendo a contribuição do campo magnético da ordem de 16%.

Com relação às medições realizadas pode-se afirmar que as mesmas foram de boa qualidade, isto é, baixa interferência e boa resolução, o que vem a confirmar a viabilidade da utilização do modelo reduzido desenvolvido.

Neste ponto, é importante salientar que talvez um arranjo de condutores, diferente do analisado no capítulo seis, com uma outra disposição em relação ao prédio (altura, distância e posição) e com um valor "especial" de corrente, ou seja, maior que o valor da corrente do canal, possa reproduzir em modelo reduzido o campo elétrico no interior de uma edificação, e também o campo magnético. Entretanto, para se chegar a esta conclusão é necessário a realização de um estudo mais profundo, com implementação em modelo reduzido.

A avaliação de configurações mais complexas de SPDA pode ser realizada através da construção de um modelo reduzido com um fator de escala menor, de tal forma que se possa incluir modelos dos sistemas de condutores presentes em edificações (telefone, interfone, etc.) com maior detalhe e realizar medições de tensão induzida em vários andares do modelo.

Mesmo que as conclusões obtidas neste trabalho não tenham aplicação imediata em edificações reais, devido à presença de pisos, paredes, janelas metálicas, tubulações de incêndio, resistências de aterrramento, etc., vários indicativos de procedimentos foram estabelecidos, e, sendo assim, recomenda-se que o estudo seja continuado a fim de se avançar e consolidar as discussões aqui apresentadas.
7.1 Propostas de Continuidade e Finalização do Trabalho

Como foi dito no decorrer deste trabalho, as medições realizadas para avaliar o campo elétrico e magnético no interior de um prédio no modelo reduzido implementado não foram realizadas com precisão, sendo apontadas várias fontes de erro. Além disso, a modelagem do prédio foi feita a mais simples possível, não sendo modelado pisos, paredes, janelas metálicas, tubulações de incêndio, etc.. Desta forma, pretende-se implementar um modelo reduzido maior onde se possa incluir a modelagem dos pisos, dos sistemas de condutores presentes no prédio (telefone, interferes, etc.) e realizar medições de tensão induzida em vários andares do modelo, reproduzindo com maior fidelidade um prédio real.

Além disso, pretende-se repetir as medições realizadas só que com maior precisão no que diz respeito aos sensores de campo utilizados, à calibração desses e ao local utilizado para implementar o modelo (proximidade de objetos metálicos).

Em seguida, como dito anteriormente, pretende-se avaliar e implementar um arranjo de condutores capaz de simular a presença do canal de descarga atmosférica quando de uma descarga direta em um prédio, pois uma vez conseguido isto, seria muito mais simples sua utilização para análise em um prédio real do que o arranjo de resistores até então proposto neste trabalho.
Referências Bibliográficas

SELECTED PAPERS FROM THE 11TH CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS (COMPUMAG '97)
Rio de Janeiro, Brazil, November 3-6, 1997

See p. 2401, Part I, for COMPUMAG '97 Table of Contents. COMPUMAG '97 papers begin on p. 2419. See Part II, p. 3667, for Regular Papers.
Lightning Induced Voltage Calculation in Lossy Transmission Lines

José O. S. Paulino, Non-Member, Antônio E. A. de Araújo, Member and Glássio C. de Miranda, Member
Department of Electrical Engineering, UFMG, P.O. Box 209, 30161-970, Belo Horizonte, M.G., Brazil

Abstract—This paper describes the implementation of the Rusck’s theory of lightning induced voltages on transmission lines in the Electromagnetic Transients Program (EMTP). After summarizing the theory, the paper presents aspects of the implementation such as interfacing problems between Rusck’s model and the EMTP. The paper also presents a study on the influence of losses in transmission lines using, as an example, waveforms of actual measured induced voltages in a distribution line.

Index terms—Power system transients, power system lightning effects, power system simulation.

I. INTRODUCTION

Several theories have been developed to calculate lightning induced voltages on lines and equipment [1]. One of those that has survived all kinds of tests is the one proposed in 1957 by S. Rusck [2].

In his thesis, Rusck developed, from Maxwell’s equations, an analytical expression for the lightning induced voltage on ideal infinite lines. An extension of Rusck’s work for finite lines with discontinuities is presented in [3].

As summarized in the next section, Rusck’s theory calculates the voltages, along the line, induced by a lightning discharge, at any time. This can be viewed as generalized voltage/current sources distributed on the line. At each of these sources, traveling waves are generated. The propagation of the waves must be calculated to properly simulate the whole interaction between the lightning discharge and the line.

One of the most powerful and used computer program for electromagnetic transients simulation in power systems is the EMTP (Electromagnetic Transients Program) [4,5]. Although the EMTP has several and important capabilities, it does not handle distributed voltage source feeding a transmission line.

The aim of the present work is to adapt the EMTP to simulate lightning induced transients in energy lines. Once the EMTP is capable to simulate distributed voltage source, one can use all the modeling capabilities built in the software (modeling of transformers, transmission lines, switches, general lumped components, etc) to explore various aspects of currently questionable induced voltage calculation.

The implementation of the generalized voltage sources is done in one of the existing versions of the EMTP and results are presented. The approach used was to make the current EMTP code work with a user written code, specially designed to simulate the induced voltages, instead of modifying the code of the EMTP. There is other approach to implement the lightning induced voltage calculation into the EMTP [6]. It differs from the present one in the way it interfaces the voltages induced by the lightning phenomena with the transmission lines.

The paper also presents a study about the influence of the losses on the line in the induced voltage waveform. The soil resistivity is taken into account in the wave propagation on the transmission line. However, the soil resistivity is not considered when calculating the fields created by the lightning discharge. Actual voltage waveforms measured in a distribution line in South Africa were used for this study.

II. RUSCK’S THEORY

According to this theory, it is possible to obtain an analytical expression describing the lightning induced voltage at a point of an infinite homogeneous line. Finite lines with simple discontinuities can be considered if the theory is slightly modified [3]. Methodologies using current sources applied to segments of the line have been presented by Rusck [2] and also by Anderson [7] and by Porto [8].

The electric field created by the lightning discharge is calculated by Rusck using the following classical expression:

\[E = -\nabla V_i - \frac{\partial A_i}{\partial t} \] \hspace{1cm} (1)

where:
\[V_i \] - Escalar potential;
\[A_i \] - Vector magnetic potential;

In his theory, Rusck proposed that the induced voltage in a homogeneous infinite transmission line is calculated by:

\[V(x, t) = U(x, t) + h \frac{\partial A_i(x, t)}{\partial t} \] \hspace{1cm} (2)

\[U(x, t) = \left(\frac{1}{2v_0} \right) \int_{-\infty}^{t} \frac{\partial V_i}{\partial t} \left(u, t - \frac{|x - u|}{v_0} \right) du \] \hspace{1cm} (3)

where:
\[x \] - point in the line;
\[t \] - time;
\[v_0 \] - velocity of the return stroke;
\[u \] - integrational variable;
\[h \] - height of the line.

Rusck showed in his thesis that (3) can be solved by the application of current sources along the transmission line. Rusck’s theory readily yields the injected current sources from the escalar potential \(V_i\). The current sources from the vector magnetic potential \(A_i\) are calculated in this paper.
A. Current Source from the Escalar Potential

The current source to be injected in the line to represent the escalar potential is [2]:

\[I_e(x,t) = \frac{1}{v_e} \frac{\partial V_e(x,t)}{\partial t} \cdot \Delta x, \]

(4)

where "Z" is the surge impedance of the line.

To use those sources in the EMTP it is necessary to discretize the line in segments of length \(\Delta x \) (Fig. 1). The end sources \(I_e1 \) and \(I_e2 \) have their values halved because the end segments length is \(\Delta x/2 \).

B. Current Source from the Vector Magnetic Potential

In a line with no discontinuities, the induced voltage caused by the vector magnetic potential is added to the induced voltage obtained from the transients of the current sources created by the escalar potential. The voltage that must be added is:

\[V_i(x,t) = \mu \frac{\partial A_i(x,t)}{\partial t} \]

(5)

As before, because of the nodal equation approach of the EMTP, this contribution is calculated through a current source. In addition, to properly implement these current sources in the EMTP, it is necessary to make the arrangement shown in Fig. 2.

Figure 2 shows that the current source

\[I_e(x,t) = h \frac{\partial A_i(x,t)}{\partial t} \]

(6)

is connected to the previously discretized line through a very high resistance "R1". If \(R2=1 \Omega \) is connected in parallel with "Ivi", the voltage difference between nodes "ai" and "bi" is exactly the sum of the voltages induced by the escalar potential and vector magnetic potential.

When there is a line-to-earth discontinuity, the component of the electric field, originated in the vector magnetic potential, will produce a current circulation on the line. Therefore, it is necessary to calculate the electromagnetic transient produced by this current. To perform this calculation, it is necessary to make \(R1=0 \) and "R2" equal to the resistance that represents the shunt element. For example, if there is a grounding point, the resistance "R2" will be the value of the grounding resistance. If there is an equipment, the process is the same, because in the modeling used in the EMTP, all the elements are represented by a current source and an equivalent resistance.

III. THE EMTP IMPLEMENTATION

The approach used in this paper to implement the Rusck's theory inside the EMTP is to take advantage of a facility existent in the Microtran version of the EMTP [5] called CONNEC.

The EMTP uses the compensation method to handle nonlinearities. This method excludes the nonlinear branch from the network and replaces it by a current source [4]. The value of the current will depend on the Thevenin equivalent network (seen from the nonlinear element nodes) and on the nonlinear characteristic itself. Therefore, the equation of the network and of the nonlinear element must be solved simultaneously. Figure 3 illustrates the situation.

The Microtran version mentioned before, makes this compensation method accessibile to the user through an interface that does not require any code changes in the EMTP proper. The EMTP calculates, at each time step, the Thevenin equivalent circuit of the network seen from whatever specified nodes. It then calls (at the same time step) the subroutine CONNEC to which it passes the values of the Thevenin impedance \(Z_{th} \) and voltage (open circuit voltage \(-V\)) through the argument list. This subroutine must return the value of the current through the nonlinear element to the
main program, shown in Figure 4.

The subroutine CONNEC enables the user to write a piece of code to describe his/her own nonlinear elements (for example, the distributed current source from Rusck's theory) and to interface these elements with the EMTP, without having to touch the EMTP code itself.

IV. RESULTS

The objective of the case studies presented in this section is to show that the proposed implementation of Rusck's theory in the EMTP is accurate. Therefore, two comparisons are made: the first one is a comparison between the EMTP and the Nucci's approach [9,10]; the second one is a comparison between the EMTP and some measurements performed in South Africa [11,12].

A. EMTP versus Nucci's Approach

Nucci et al. in 1993, presented a methodology for calculating induced voltages in overhead lines caused by lightning discharges [9,10]. The interaction field-line is performed by the model proposed by Agrawal et al. [13].

Figure 5 shows the configuration of the transmission line and the discharge incidence point used to perform the comparison. Figure 6 shows the discharge current waveforms.

Figure 7 shows the result of the EMTP simulation and the result of Nucci's work. Clearly the EMTP simulation using the Rusck's model reproduces very well the result obtained by Nucci et al. The small differences between the curves are due to the difference in representing the stroke current (Fig. 6).

B. EMTP versus South Africa Measurements

The measurements used in this section were performed in South Africa where a research project has been conducted since 1978 [11]. The project aims at measuring lightning induced voltages on a three-phase, 10 km long, distribution line. The configuration of the distribution line, the measuring point and the estimated discharge incidence points are shown in Fig. 8.

Figure 9 show the oscillogram of the measurement of an induced voltage in one of the line phases. Mr. H. Geldenhuys, the current project manager, kindly provides the oscillogram shown here [12]. The data of the stroke currents are not available and are estimated: current peak value: 14 kA; current wave form: step; current velocity: 80 m/μs.

Figure 10 show the EMTP simulation for the case of Fig. 9. Although it is not possible to claim a very high degree of accuracy, the EMTP results are very good if it is taken into account the uncertainty about the stroke current data.

Fig. 4. Subroutine CONNEC and its interface with the main program

Fig. 5. Line-discharge configuration-EMTP vs. Nucci's approach

Fig. 6. Current waveforms

Fig. 7. EMTP vs. Nucci's approach-simulation results

Fig. 8. Line-discharge configuration - South Africa measurements

Fig. 9. South Africa measurements-Peak value: 33 kV
In these simulations a lossless transmission line model was used. The EMTP has a built-in model of lossy transmission where line losses are considered to be frequency dependent. Figure 11 shows the simulation results for this line and the results are better than the previous ones (neglecting the losses). Figure 12 shows the influence of soil resistivity on the induced voltage waveform.

V. CONCLUSIONS

Using the current sources to represent the components of the electric field, from Rusck's theory, the lightning induced transients in energy lines were obtained using the EMTP. The implementation of the generalized current sources is done in one of the existing versions of the EMTP using the compensation method (CONNEC).

Comparisons were made and show that the proposed implementation of Rusck's theory in the EMTP is accurate. Clearly the EMTP simulation using the Rusck's model reproduces very well the result obtained by Nucci. The small differences between the curves are due to the difference in representing the stroke current. In the comparisons between simulations and South Africa measurements it is not possible to claim a very high degree of accuracy. However, the EMTP results are very good if it is taken into account the uncertainty about the stroke current data. The consideration of the losses in the line improves very much the simulation results.

Based on the good results of this paper, a broader work is being performed. What is expected is a deeper study on the role played by transmission line losses in the propagation of lightning induced voltages.

ACKNOWLEDGMENT

The authors acknowledge the National Research Council (CNPq) and the provincial Research Council (FAPEMIG), Brazil, for their financial support.

REFERENCES

[12] Geldenhuys, H.J., Personal Correspondence. The measurement results were kindly provided by Mr. Geldenhuys to Dr. Paulino.
Influência da Presença do Canal de Descarga nos Campos Eletromagnéticos Criados Dentro de um Prédio por uma Descarga Atmosférica

M. L. G. V. Santos, J. O. S. Paulino, W. C. Boaventura
Centro de Pesquisa e Desenvolvimento em Engenharia Elétrica
Universidade Federal de Minas Gerais - UFMG
Av. Antônio Carlos, 6627, Pampulha
CEP: 31270-901, Belo Horizonte - MG, Brasil

Abstract - This work presents the development of a reduced model as a tool for studies of induced electromagnetic fields inside a building due to direct lightning discharges. The modeling used for the building, the building channel, return stroke, and ground are presented, as well as the measurement equipments. The effect of the discharge channel presence was studied, based on the electric field measurements.

Index terms - Lightning, electromagnetic compatibility, electric fields, measurements, simulation.

I. INTRODUÇÃO

Nos últimos anos, a maçã introdução de equipamentos eletrônicos de última geração em todos os setores da sociedade incrementou os estudos relativos à compatibilidade eletromagnética. Estes diversos estudos e pesquisas desenvolvidos indicam que um dos maiores agentes perturbadores de equipamentos eletrônicos são as descargas atmosféricas.

A interação entre descargas atmosféricas e edificações ocorre basicamente através de descargas diretas e indiretas. No primeiro caso a interação ocorre pela injeção de correntes impulsivas de amplitudes elevadas (5 a 200 kA) no sistema de captação de descargas da edificação. Estas correntes fluem pelos cabos de descação ou pela ferragem da edificação dando origem a campos eletromagnéticos que, por sua vez, interagem com o conjunto de condutores da edificação. No segundo caso, a interação ocorre apenas através do acoplamento dos campos eletromagnéticos criados pela descarga atmosférica com o conjunto dos condutores da edificação, não havendo a injeção de corrente direta [1], [2].

Existem vários caminhos para se avaliar as sobretensões causadas pela interação dos campos eletromagnéticos da descarga e os condutores da edificação, sendo que muitos deles são estudos teóricos, desenvolvidos através de métodos analíticos ou numéricos. Recentemente, pode-se destacar os estudos que utilizam técnicas de simulação para cálculo do campo elétrico, como por exemplo as baseadas em TLM - “Transmission Line Modeling” [3], [4]. Um outro método que possibilita a solução desse tipo de problema é a utilização de soluções analógicas [1], [2], [5] por meio de técnicas de modelos reduzidos.

Desta forma, o objetivo deste trabalho é estabelecer um modelo reduzido para estudos de indução de campos eletromagnéticos no interior de edificações causadas por descargas atmosféricas diretas. O trabalho de simulação em modelo reduzido envolverá, então, a modelagem do fenômeno da descarga atmosférica (canal de descarga, onda de corrente, velocidade de propagação, etc.), do plano de terra, e da edificação relacionada ao sistema de proteção contra descargas atmosféricas.

II. MODELO REDUZIDO

O sistema analisado neste trabalho simula basicamente um prédio e uma descarga atmosférica direta que interage com os conjuntos de condutores dessa edificação, que neste caso, está representado por um modelo simplificado, correspondendo apenas ao SPD (sistema de proteção contra descargas atmosféricas). Como o objetivo da simulação em modelo reduzido é ser o mais próximo possível da realidade, o ponto de partida para se determinar a dimensão física do modelo reduzido é, consequentemente, o valor do fator de escala a ser empregado, são as dimensões físicas do sistema real, assim como as dimensões do local onde o modelo será implementado. Considerando um prédio real de quatro andares, ou seja, altura de 12 m a 15 m, e sendo o modelo implementado no laboratório de compatibilidade (6,5 m de comprimento, 7,6 m de largura e 3,7 m de altura), optou-se por um fator de escala de 1:30.

A. Plano de Terra

Embora nos sistemas reais o plano de terra apresente perdas (tanto o solo como o concreto e asfalto/calçamento apresentam condutividades finitas), para este estudo considerou-se um plano ideal (resistividade nula), sendo utilizado um plano de cobre cujas dimensões ideais seriam infinitas. Entretanto, como isto não é possível, pode-se reduzir essas dimensões de forma a se obter bons resultados. Considerando o espaço físico disponível e por facilidade de confecção, optou-se por um plano metálico de 1,26 m de largura, 2,25 m de comprimento e 0,6 mm de espessura. Este plano foi montado diretamente sobre o solo.

E-mail: grossi@novell.cpdee.ufmg.br; josvaldo@eee.ufmg.br
Os autores agradecem à Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), pelo suporte financeiro.
B. Canal de Descarga

A modelagem do canal de descarga deve procurar manter as mesmas condições de propagação da corrente de retorno presentes no canal real, ou seja, as perdas, as não linearidades, a tortuosidade e a velocidade de propagação, a qual, segundo as teorias sobre descargas atmosféricas, está na faixa de 10% a 50% da velocidade da luz [6]. Entretanto, uma modelagem completa seria extremamente difícil de ser implementada, sendo que apenas a velocidade de propagação será considerada.

Portanto, adotou-se como modelo para representar o canal de descarga uma linha de transmissão retílinea disposta verticalmente em relação ao plano de terra, cujos parâmetros físicos (indutância e capacitância por metro) fornecem uma velocidade de propagação na faixa anteriormente citada.

Apesar deste modelo simplificar bastante o fenômeno, estudos teóricos e experimentais indicam que os campos eletromagnéticos criados pela linha de transmissão vertical são similares aos campos criados pelas descargas atmosféricas reais [7].

Isto significa que podemos simular os efeitos de uma descarga atmosférica sobre uma edificação utilizando como fonte de campo uma linha de transmissão vertical percorrida por uma corrente impulsionada.

O comprimento do canal utilizado é de 3 m, o diâmetro igual a 1,5 cm, tendo a velocidade de propagação calculada aproximadamente igual a 32,26 m/µs, 10,75% da velocidade da luz.

C. Corrente de Retorno

O gerador de corrente utilizado no modelo reduzido fornece ondas de corrente cujos valores de tempo de frente estão na faixa de 47 ns. Sendo assim, aplicando-se o fator de escala, obtém-se ondas que na realidade têm o seu tempo de frente da ordem de 1,4 µs, que representam perfeitamente uma onda real (tempo de frente de 1 a 10 µs) [6].

Dessa forma, simulou-se a corrente de retorno através de uma onda de corrente de forma impulsionada, a qual foi injetada por um gerador de ondas, sendo que à medida que se propagava em direção ao topo do canal, ia carregando o mesmo. O gerador de ondas utilizado foi construído no C.P.D.E.E. por Coelho e Boaventura [1], tendo as seguintes dimensões: 10 cm de largura, 4 cm de altura e 8 cm de profundidade. Ele é alimentado por 3 baterias de 9 V e fornece uma onda de tensão impulsionada máxima de 590 V de amplitude com tempo de frente de aproximadamente 33 ns e tempo de semi-cauda maior que 400 ns. Esta onda de tensão é aplicada na base do canal de descarga, produzindo uma onda de corrente de descarga na faixa de 50 mA.

D. Prédio

A modelagem do prédio é na realidade a mesma modelagem do SPDA, pois não foram modelados nem as paredes, nem os pisos. Um modelo fechado complexo resultaria em uma reprodução mais fiel da situação real, mas implicaria em inconveniências para as medições e análises futuras [5]. O modelo utilizado é constituido por uma estrutura cúbica de 42 cm de aresta, sendo também incluído um "X" no topo do SPDA. As varetas de latão utilizadas na construção do modelo foram soldadas para garantir um melhor contato nas conexões. Considerando o fator de escala adotado neste trabalho, este modelo representa uma edificação real de 13 m de altura.

E. Localização dos Componentes do Modelo

O plano terra foi montado diretamente sobre o solo. O canal de descarga foi fixado no teto do laboratório de compatibilidade eletromagnética por meio de um fio de nylon, localizando-se aproximadamente no meio do plano e logo acima do prédio. O gerador de ondas de corrente foi colocado sobre uma estrutura de madeira para ficar na mesma altura do prédio, sendo conectado a este através de um cabo coaxial. O osciloscópio utilizado para medição da corrente aplicada e avaliação dos campos eletônicos foi colocado sobre um carrinho apropriado. O SPDA foi fixado no meio do plano de cobre através de quatro chapas pequenas de cobre estando uma em cada descida do SPDA (fig. 1).

III. SISTEMA DE MEDIDAÇAO

Um dos pontos críticos da simulação analógica é o sistema de medição empregado, pois este é a interface que possibilita a observação e registro do fenômeno que está sendo investigado. Sendo assim, é muito importante que uma vez definido, o sistema a ser empregado seja calibrado e testado.
de forma que reduza ao mínimo os erros por ele introduzidos [7].

Quando da definição do sistema de medição, algumas características básicas inerentes a estes devem ser observadas, como a largura da banda de passagem do sistema, ou seja, a frequência máxima dos sinais (tenso ou corrente) que podem ser medidos sem sofrer distorções ou atenuações. Como estamos trabalhando com modelo reduzido, quando da aplicação do fator de escala, a frequência dos sinais a serem medidos tornam-se bem elevadas, sendo então fundamental que os equipamentos sejam adequados.

As ondas de corrente possíveis de serem geradas e injetadas no sistema a partir do gerador de degrau disponível para este estudo são de baixa amplitude (aproximadamente 50 mA) e, como o valor da tensão medida no interior do prédio é proporcional ao valor de pico da corrente de retorno, essas ondas são de baixa amplitude. Portanto, é necessário que o sistema de medição tenha sensibilidade para medir tais sinais. Finalmente, o sistema de medição deve ser capaz de registrar as ondas de sinais medidos.

Baseado no exposto anteriormente e de acordo com os equipamentos disponíveis, o sistema de medição utilizado foi definido. Todas as medições foram feitas utilizando um osciloscópio digital com banda de passagem de 200 MHz, cujos dados de medição são gravados em discos no próprio osciloscópio. As correntes aplicadas na base do canal foram medidas através de uma ponta de prova de corrente de banda de passagem de 120 MHz.

O sensor de campo elétrico foi construído no laboratório de compatibilidade eletromagnética da UFMG, sendo que para sua construção utilizou-se uma chapa de cobre circular, na qual foi conectada uma ponta de prova de tensão (14 pF de capacitância e banda de passagem de 200 MHz) por meio de um conector BNC. A ponta de prova foi fixada no plano de cobre através do seu terra e ligada ao osciloscópio (fig. 2), de modo que a chapa de cobre circular ficasse paralela ao plano de cobre, formando um capacitor [8]. O sensor estava localizado bem no meio do SPDA.

Entretanto, este sensor teve que ser calibrado, sendo que a calibração foi feita através de dois métodos. Primeiramente utilizou-se um arranjo de placas retangulares planas, sendo uma placa de alumínio e a outra de cobre, ambas de 2 m x 1 m. O arranjo foi colocado sobre um suporte isolante de madeira a 59 cm do solo, sendo que a placa de cobre foi bem aterrada. A distância entre as placas foi de 26,5 cm, e o sensor foi colocado bem no meio da montagem [8]. O gerador utilizado para se fazer a calibração foi o da Tektronix modelo CFG280, cuja amplitude máxima de saída é igual a 20 Vp-p, a impedância de saída é igual a 50 Ω e a faixa de frequência vai de 0,1 Hz a 11 MHz. O outro método consistiu em uma linha unifilar de 11 m de comprimento, casada em uma das extremidades, localizada sobre um plano de alumínio de 12 m x 1,10 m, a qual estava localizada no meio deste, a 50 cm do plano. Utilizando-se o mesmo gerador, aplicou-se uma onda em forma de degrau e mediu-se a tensão induzida no sensor localizado no meio da linha e bem abaixo desta.

A constante obtida na calibração, em ambos os métodos, é aproximadamente igual a 95, ou seja, para se obter o campo elétrico no interior do SPDA deve-se multiplicar o valor da tensão medida por 95.

IV. RESULTADOS

As medições foram realizadas com o objetivo de se analisar o efeito da presença do canal de descarga nos campos eletromagnéticos criados dentro do SPDA, quando de uma descarga atmosférica direta. Boa parte da literatura considera que a manutenção dos valores de corrente nos condutores de descida, reproduz as condições de campo eletromagnético no interior do prédio.

Para avaliar essa informação, foi feito um arranjo de quatro condutores circundando o prédio (fig. 3), igualmente espacados e diretamente aterrados ao plano de cobre, sendo conectado um resistor de valor aproximadamente igual à impedância do canal de descarga, $R = 3.38$ kΩ, entre o gerador de ondas e o ponto de conexão dos 4 condutores, formados cada um por um fio de 0,56 mm de diâmetro, fixados em uma estrutura de PVC, a qual foi utilizada para sustentar os mesmos. Os resultados obtidos utilizando o canal (fig. 4) e este arranjo estão apresentados a seguir. Em ambas as situações analisadas as correntes nos condutores do SPDA foram iguais, sendo que devido a sua simetria, em cada condutor de descida circula $\frac{1}{4}$ da corrente total aplicada.

![Fig. 2. Detalhe do sensor de campo elétrico](image)

![Fig. 3. Modelo reduzido utilizando quatro condutores](image)
A. Medidas de Campo Elétrico

Fig. 5. Corrente aplicada em função do tempo

Fig. 6. Tensão medida na antena localizada no interior do SPDA

V. CONCLUSÕES

Pelo que foi apresentado pode-se concluir que o objetivo básico do trabalho, ou seja, o estabelecimento de um modelo reduzido para estudo da interação de descargas atmosféricas diretas e o SPDA foi satisfatoriamente atingido.

Com relação às medições realizadas pode-se afirmar que as mesmas foram de boa qualidade, isto é, baixa interferência e boa resolução, o que vem a confirmar a viabilidade da utilização do modelo reduzido desenvolvido.

Fig. 4. Modelo reduzido utilizando o canal

Os resultados obtidos quando da avaliação dos campos eletromagnéticos no interior do prédio levam-nos a concluir que a representação da presença do canal de descarga é fundamental, sendo que apenas a manutenção da corrente nos condutores de descida não é suficiente para reproduzir os efeitos de um descarga atmosférica.

REFERÊNCIAS