ASSOCIAÇÃO ENTRE CENÁRIOS DE SANEAMENTO E DIARRÉIA EM BETIM-MG: O EMPREGO DO Delineamento Epidemiológico Caso-Controle na Definição de Prioridades de Intervenção

LÉO HELLER

Belo Horizonte
1995
Associação entre cenários de saneamento e diarréia em Betim-MG:
O emprego do delineamento epidemiológico caso-controle
na definição de prioridades de intervenção

Tese apresentada à Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do grau de Doutor em Ciência Animal.
Área de concentração: Medicina Veterinária Preventiva e Epidemiologia.
Orientador: Prof. Carlos Maurício de Figueiredo Antunes.

Belo Horizonte
UFMG - Escola de Veterinária
1995
HELLER, LÉO, 1955-
Associação entre cenários de saneamento e diarréia em Betim-MG: o emprego do método epidemiológico caso-controle na definição de prioridades de intervenção/
294p.: 36 il.

Tese (Doutorado)
1. I. Título.
Tese defendida e aprovada em 08/10/95, pela Comissão Examinadora constituida por:

Carlos Maurício de Figueiredo Antunes
Orientador

Celina Mana Modena

Euclydes Ayres de Castilho

Maurício Gomes Pereira

Ysnard Machado Ennes
Dedico
ao Sr. Bernardo, à D. Rachel, à Lau e
aos meus filhos Pedro, Diogo e Carolina -
verdadeiras motivações para mais este passo na modesta
tentativa de que as coisas não permaneçam imutáveis.
AGRADECIMENTOS

O presente trabalho foi realizado graças a uma conjunção de esforços.

Inicialmente, sua elaboração não teria sido concretizada se o Departamento de Engenharia Sanitária e Ambiental da UFMG não tivesse a consciência da importância da capacitação para seu corpo funcional e, fundamentalmente, a visão da necessária relação multidisciplinar na abordagem dos temas do saneamento e do meio ambiente. Ter propiciado, portanto, as condições favoráveis para que eu pudesse dedicar-me ao curso de Doutorado foi decisivo para a conclusão da empreitada. Agradeço ao Departamento, nas pessoas dos professores Honório Pereira Botelho, Ysnard Machado Ennes, Carlos Augusto de Lemos Chemicharo e Marcos von Sperling, chefes do DESA entre 1991 e 1995, que acreditaram e incentivaram o projeto.

A compreensão, pela Prefeitura Municipal de Betim, da importância da pesquisa foi fundamental para o seu desenvolvimento, mostrando, sempre que solicitada, toda a boa vontade em oferecer dados e o suporte material e humano. As Secretarias Municipais de Saúde, Planejamento e Fazenda, a TRANSBETIM e a Assessoria de Saneamento da Prefeitura tiveram participação fundamental no apoio à pesquisa.

Seria injusto ainda não reconhecer o apoio da COPASA-MG, no fornecimento dos dados sobre o consumo de água nas moradias pesquisadas.

Sem o suporte das agências de fomento, cada uma com sua cota, dificilmente a pesquisa teria chegado a seu termo. Assim, agradeço à FAPEMIG a concessão da maior parte dos recursos para a pesquisa, além da bolsa de iniciação científica; ao CNPq a concessão das bolsas de aperfeiçoamento e de iniciação científica, da bolsa de Doutorado durante um período do curso, além do auxílio financeiro, e à Pró-Reitoria de Pesquisa da UFMG o apoio financeiro, particularmente para os inúmeros deslocamentos até Betim.

Ao colegiado dos cursos de Pós-Graduação em Medicina Veterinária, agradeço todo o apoio logístico e administrativo, registrando, sobretudo, sua avançada concepção do ensino de pós-graduação, refletida na aprovação do presente trabalho, que envolveu formalmente três diferentes unidades da UFMG - a Escola de Veterinária, o Instituto de Ciências Biológicas e a Escola de Engenharia -, numa tentativa de visão
interdisciplinar do objeto *saneamento*. Meus reconhecimentos ao empenho dos funcionários e à contemporaneidade da mentalidade dos professores com quem tive a oportunidade do convívio.

Aos bolsistas de aperfeiçoamento e de iniciação científica, que foram os companheiros de todas as horas, meus sinceros agradecimentos: Rosa, Ana Cristina, Silvia; Marle, Luiz Altivo e Danielle.

Não poderia deixar de registrar o papel do comitê de orientação e de outros colegas docentes:
- a professora Celina Maria Modena, com quem dividi ansiedades, expectativas, ideias e sonhos, ao longo desses quatro anos, e quem ofereceu a segurança acadêmica em diversos momentos do trabalho;
- o professor Ysnard Machado Ennes, com sua arraigada e sólida visão de sanitarista, a qual extrapola em muito os limites da engenharia formal, e sua contribuição para que o trabalho não perdesse a marca de minha formação profissional;
- os co-orientadores agregados: o professor Ivan Barbosa Machado Sampaio, que ofereceu o respaldo em alguns momentos quando a estatística mostrava-se impenetrável e o professor Enrico Colosimo, do Departamento de Estatística, com sua orientação modema e companheira, tendo sido um esteio nos momentos dos embates estatísticos mais ferrenhos.

Por fim, gostaria de destacar o verdadeiro co-autor do trabalho, mais do que o orientador científico formal, o grande epidemiologista e professor Carlos Maurício de Figueiredo Antunes, cuja segurança, interesse, dedicação, seriedade profissional e compromisso acadêmico foram a grande sustentação para toda a pesquisa, nela deixando tatuada sua marca.
"Não devemos ouvir os que nos aconselham a 'pensar como homens', ou que nos dizem: 'Mortal, recorda-te de tua mortalidade'. Ao contrário, devemos, tanto quanto pudermos, vestir a imortalidade e nada deixar de tentar no esforço de viver em conformidade com o que de mais elevado em nós exista. Pode ser algo de pequenas dimensões, mas seu poder e preciosidade transcendem o de tudo o mais. Podemos, na realidade, acreditar que isso constitua verdadeiramente o indivíduo, pois é a parte melhor, e soberana, dele."

Aristóteles
SUMÁRIO

RESUMO

1- INTRODUÇÃO

2- REVISÃO DA LITERATURA
2.1- MODELOS DE ASSOCIAÇÃO ENTRE CONDIÇÕES DE SANEAMENTO E SAÚDE
2.1.1- ASPECTOS HISTÓRICOS
2.1.2- ABASTECIMENTO DE ÁGUA E ESGOTAMENTO SANITÁRIO
2.1.3- OUTRAS AÇÕES DE SANEAMENTO
2.2- A CLASSIFICAÇÃO AMBIENTAL DAS ENFERMIDADES INFECCIOSAS
2.3- ESTUDOS DE IMPACTO DAS INTERVENÇÕES EM SANEAMENTO SOBRE A SAÚDE
2.4- INDICADORES DE SAÚDE
2.4.1- VARIÁVEIS APLICÁVEIS A ESTUDOS DE IMPACTO DE INTERVENÇÕES EM SANEAMENTO
2.4.2- MORBIDADE POR ENFERMIDADES DIARRÉICAS
2.4.2.1- Definição
2.4.2.2- Importância no âmbito da saúde pública
2.4.2.3- Etiologia
2.4.2.4- Determinantes
2.5- DELINEAMENTOS EPIDEMIOLÓGICOS

3- MATERIAL E MÉTODOS
3.1- ÁREA GEOGRÁFICA ABRANGIDA
3.2- DELINEAMENTO EPIDEMIOLÓGICO
3.3- DIMENSIONAMENTO DA AMOSTRA
3.4- PROTOCOLO ADOTADO
3.5- SELEÇÃO DOS CASOS
3.6- SELEÇÃO DOS CONTROLES
3.7- REALIZAÇÃO DAS ENTREVISTAS

pág.
23
26
26
26
31
38
42
44
56
56
57
57
58
60
65
71
76
76
80
80
85
86
96
98
3.8-	TESTE DE CONFIABILIDADE	100
3.9-	ANÁLISE DE DADOS	101
3.9.1-	METODOLOGIA ADOTMADA	101
3.9.2-	DISTRIBUIÇÃO DE FREQUÊNCIAS	102
3.9.3-	ANÁLISE UNIVARIADA	103
3.9.3.1-	Estimativa do risco relativo (RR)	104
3.9.3.2-	Intervalo de confiança do RR	104
3.9.3.3-	Análise de tendência	104
3.9.3.4-	Cálculo do risco atribuível	105
3.9.4-	ANÁLISE BIVARIADA	106
3.9.5-	ANÁLISE MULTIVARIADA	111

4-	RESULTADOS	114
4.1-	CARACTERIZAÇÃO DA AMOSTRA ESTUDADA	114
4.1.1-	CASOS	114
4.1.2-	CONTROLES	118
4.2-	DISTRIBUIÇÃO DE FREQÜÊNCIAS	121
4.3-	TESTES ESTATÍSTICOS	121
4.4-	ANÁLISE UNIVARIADA	123
4.5-	ANÁLISE BIVARIADA	126
4.6-	ANÁLISE MULTIVARIADA	127
4.7-	RISCO ATRIBUÍVEL	132
4.8-	ANÁLISE ESPECÍFICA SOBRE O CONSUMO DE ÁGUA	133
4.9-	TESTE DE CONFIABILIDADE	135
4.10-	DETERMINAÇÃO DO "ODDS RATIO"	136

5-	DISCUSSÃO	139
5.1-	DA METODOLOGIA	139
5.1.1-	PROBLEMAS INERENTES AOS ESTUDOS CASO-CONTROLE	139
5.1.1.1-	Considerações gerais	139
5.1.1.2-	Biases de seleção diferenciada de casos e de controles	139
5.1.1.3-	Biases de seleção dos casos	141
5.1.1.4-	Biases na estimativa da exposição	143
5.1.1.5-	Estimativa do risco	144
5.1.2-	AVALIAÇÃO DAS PREMISSAS ADOTMADAS NO DELINEAMENTO	144
7.7- ANEXO G: ANÁLISE BIVARIADA - RESULTADOS
7.8- ANEXO H: DEFINIÇÃO DAS CATEGORIAS - ANÁLISE MULTIVARIADA
7.9- ANEXO I: ANÁLISE MULTIVARIADA - RESULTADOS
7.10- ANEXO J: RISCO ATRIBUÍVEL - RESULTADOS
7.11- ANEXO K: TESTE DE CONFIABILIDADE - RESULTADOS

8- SUMMARY

9- REFERÊNCIAS BIBLIOGRÁFICAS
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EVOLUÇÃO DA MORTALIDADE POR FEBRE TIFÓIDE E DO ATENDIMENTO POR ABASTECIMENTO DE ÁGUA - MASSACHUSETTS (1855-1940)</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>EVOLUÇÃO DA MORTALIDADE E MELHORIAS NOS SERVIÇOS DE ABASTECIMENTO DE ÁGUA E ESGOTAMENTO SANITÁRIO - FRANÇA (SÉC. XIX)</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>EVOLUÇÃO DA MORTALIDADE POR DIARRÉIA E POR GASTROENTERITE E DO ATENDIMENTO POR ABASTECIMENTO DE ÁGUA - COSTA RICA (1940-1980)</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>REPRESENTAÇÃO ESQUEMATICA DA TEORIA DO LIMIAR-SATURAÇÃO: EFEITO DO SANEAMENTO SOBRE A SAÚDE, EM FUNÇÃO DO NÍVEL SÓCIO-ECONÔMICO</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>SIMULAÇÃO DA TRANSMISSÃO FECO-ORAL DE AGENTES PATOGÉNICOS</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>EFEITOS DIRETOS E INDIRETOS DO ABASTECIMENTO DE ÁGUA E DO ESGOTAMENTO SANITÁRIO SOBRE A SAÚDE: ESQUEMA CONCEITUAL</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>MODELO CAUSAL DA MORTALIDADE INFANTIL NO SRI-LANKA</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>ESQUEMA DAS VIAS DE CONTATO HOMEM-LIXO</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>VARIÁVEIS DETERMINANTES DA TRANSMISSÃO DAS INFECÇÕES EXCRETADAS</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO A DÉCADA DE PUBLICAÇÃO</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>DISTRIBUIÇÃO POR CONTINENTE DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, POR CONTINENTE E POR DÉCADA DE PUBLICAÇÃO</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO A VARIÁVEL DE SANEAMENTO AVALIADA</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O RESULTADO OBTIDO</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O INDICADOR DE SAÚDE</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>RELAÇÃO DOSE-RESPOSTA PARA DIARRÉIA EM UMA COMUNIDADE EXPOSTA A PATOGÉNICOS ENTERÍCOS - MODELO ESQUEMÁTICO</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>TRÍADE COMPOSTA PELA DIARRÉIA, DESNUTRIÇÃO E INFECÇÃO - MODELO CONCEITUAL</td>
<td>61</td>
</tr>
</tbody>
</table>
18 MODELO SÓCIO-ECOLÓGICO DOS DETERMINANTES DA DIARRÉIA
19 CARACTERIZAÇÃO DOS MÉTODOS EPIDEMIOLÓGICOS
20 DISTRIBUÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O MÉTODO EPIDEMIOLÓGICO
21 DISTRIBUÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O MÉTODO EPIDEMIOLÓGICO E A DÉCADA DE PUBLICAÇÃO
22 SEDE URBANA DE BETIM-MG - ÁREA ABRANGIDA PELA PESQUISA
23 RELAÇÃO ENTRE O TAMANHO DA AMOSTRA (n) E A DIFERENÇA DE EXPOSIÇÕES ENTRE CONTROLES E CASOS (Δ), PARA DIFERENTES VALORES DE p0
24 FICHA DE REGISTRO DE CASOS DE DIARRÉIA
25 INSTITUIÇÕES 11-PB, 15-PB E 05-PB - METODOLOGIA PARA A COLETA DE CASOS
26 INSTITUIÇÕES 02-PB, 04-PB, 06-PB, 07-PB, 08-PB, 09-PB, 10-PB, 12-PB, 13-PB E 14-PB - METODOLOGIA PARA A COLETA DE CASOS
27 INSTITUIÇÃO 01-PB - METODOLOGIA PARA A COLETA DE CASOS
28 INSTITUIÇÃO 14-PV - METODOLOGIA PARA A COLETA DE CASOS
29 ANÁLISE BIVARIADA - METODOLOGIA PARA IDENTIFICAÇÃO DE VARIÁVEIS DE CONFUSÃO
30 ANÁLISE BIVARIADA - METODOLOGIA PARA IDENTIFICAÇÃO DE MODIFICAÇÃO DE EFEITO
31 DISTRIBUIÇÃO TEMPORAL DO NÚMERO DE CASOS DE DIARRÉIA E DA TEMPERATURA AMBIENTE EM IBIRITÉ E EM BELO HORIZONTE
32 DISTRIBUIÇÃO TEMPORAL DO NÚMERO DE CASOS DE DIARRÉIA E DA PRECIPITAÇÃO DIÁRIA EM IBIRITÉ E EM BELO HORIZONTE
33 REPRESENTAÇÃO GRÁFICA DOS TESTES DE TENDÊNCIA DOS RISCOS RELATIVOS
34 MODELO LOGÍSTICO FINAL - SEM FATORES DE MODIFICAÇÃO DE EFEITO
35 MODELO LOGÍSTICO FINAL - COM FATORES DE MODIFICAÇÃO DE EFEITO
36 RELAÇÃO ENTRE INTERMITÊNCIA NO ABASTECIMENTO E CONSUMO "PER CAPITA" (qpc)
LISTA DE TABELAS

1 SIMULAÇÃO DO EFEITO DA ELIMINAÇÃO DE DIFERENTES VIAS DE TRANSMISSÃO SOBRE A INCIDÊNCIA DE UMA ENFERMIDADE 32

2 REDUÇÃO PERCENTUAL NA MORBIDADE POR DIARRÉIA ATRIBUIÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA OU NO ESGOTAMENTO SANITÁRIO - SISTEMATIZAÇÃO DE 1985 36

3 REDUÇÃO PERCENTUAL NA MORBIDADE OU NA INFECÇÃO POR PATOGÊNICOS DIVERSOS, ATRIBUIÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA OU NO ESGOTAMENTO SANITÁRIO 36

4 REDUÇÃO PERCENTUAL NA MORBIDADE POR DIARRÉIA, ATRIBUIÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA OU NO ESGOTAMENTO SANITÁRIO - SISTEMATIZAÇÃO DE 1991 37

5 REDUÇÃO PERCENTUAL NA MORBIDADE E MORTALIDADE POR DOENÇAS SELECIONADAS, ATRIBUIÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA E NO ESGOTAMENTO SANITÁRIO 37

6 ASSOCIAÇÃO ENTRE FATORES DE RISCO E DIARRÉIA, SEGUNDO DIFERENTES NÍVEIS DE SIGNIFICÂNCIA 39

7 CLASSIFICAÇÃO AMBIENTAL DAS INFECÇÕES RELACIONADAS COM A ÁGUA 43

8 CLASSIFICAÇÃO AMBIENTAL DAS INFECÇÕES RELACIONADAS COM OS EXCRETAS 45

9 SÍNTESE DESCRITIVA DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE 52

11 PERCENTUAL DE Ocorrência DE MICRORGANISMOS NAS FEZES DE PORTADORES DE DIARRÉIAS, SEGUNDO NOVE DIFERENTES ESTUDOS 61

12 FREQUÊNCIA DA Ocorrência DE MICRORGANISMOS NAS FEZES DE PORTADORES DE DIARRÉIA, SEGUNDO NOVE DIFERENTES ESTUDOS 62

13 ORDEM DE FREQUÊNCIA DA Ocorrência DE MICRORGANISMOS NAS FEZES DE PORTADORES DE DIARRÉIA, PARA DIVERSAS FAIXAS ETÁRIAS 64

14 INTERVENÇÕES POTENCIAIS PARA A REDUÇÃO DA MORBIDADE E DA MORTALIDADE POR DIARRÉIA EM CRIANÇAS DE ATÉ CINCO ANOS 66

15 POSSÍVEIS VARIANTES EM UM ESTUDO CASO-CONTROLE 74

16 DADOS DEMOGRAFÍCOS DE BETIM, RMBH, MINAS GERAIS E BRASIL 76

17 PRINCIPAIS GRUPOS DE DOENÇAS VERIFICADOS NO MUNICÍPIO DE BETIM, SEGUNDO FONTES DIVERSAS 77
18	TAMANHOS DA AMOSTRA, EM FUNÇÃO DE DIFERENTES RISCOS RELATIVOS	82
19	EXEMPLO DE DIMENSIONAMENTO DE AMOSTRA PARA NÍVEIS MÚLTIPLOS DE EXPOSIÇÃO - RELAÇÃO ENTRE CASOS E CONTROLES	83
20	EXEMPLO DE DIMENSIONAMENTO DE AMOSTRA PARA NÍVEIS MÚLTIPLOS DE EXPOSIÇÃO - TAMANHO DA AMOSTRA	84
21	RELAÇÃO DAS INSTITUIÇÕES DE SAÚDE INCLUÍDAS NA COLETA DE CASOS	87
22	DISTRIBUIÇÃO SEMANAL DOS CASOS	90
23	DISTRIBUIÇÃO DOS CASOS, SEGUNDO INSTITUIÇÃO DE SAÚDE E MÉTODO DE COLETA	95
24	PROCEDIMENTOS ADOTADOS NA SELEÇÃO DOS CONTROLES	97
25	FORMULAÇÃO ESQUEMÁTICA DO ESTUDO CASO-CONTROLE	103
26	NÚMERO DE PERDAS DE CASOS E PERCENTUAL DE PERDAS, SEGUNDO A A INSTITUIÇÃO DE SAÚDE	117
27	NÚMERO DE CONTROLES POR BAIRRO E PROPORÇÃO DO NÚMERO DE RESIDÊNCIAS OCUPADAS	119
28	VARIÁVEIS QUANTITATIVAS - TESTE t DE STUDENT DE DIFERENÇA ENTRE MÉDIAS	121
29	RISCOS RELATIVOS BRUTOS PARA AS PRINCIPAIS EXPOSIÇÕES - VARIÁVEIS QUALITATIVAS DICOTÔMICAS	123
30	ANÁLISE MULTIVARIADA - VARIÁVEIS SIGNIFICATIVAS EM CADA ETAPA DE ANÁLISE	128
31	DISTRIBUIÇÃO DA AMOSTRA DE CASOS E CONTROLES, SEGUNDO A FORMA DOS DADOS DA COPASA-MG SOBRE CONSUMO DE Água	133
32	CONSUMO "PER CAPITA" - RESULTADO DO TESTE t DE STUDENT DE COMPARAÇÃO ENTRE MÉDIAS	134
33	CONSUMO "PER CAPITA" - ANÁLISE DE TENDÊNCIA COM ESTRATIFICAÇÃO POR NÍVEL SÓCIO-ECONÔMICO	135
34	TESTE DE CONFIABILIDADE - NÍVEIS DE CONCORDÂNCIA PARA TESTES COM O MESMO E COM OUTRO ENTREVISTADOR	136
35	RR DO MÉTODO CASO-COORTE E OR DO MÉTODO CASO-CONTROLE - ESTIMATIVAS PONTUAIS E INTERVALOS DE CONFIANÇA	138
36	TAMANHOS DA AMOSTRA PARA EXPOSIÇÕES DIVERSAS, NAS CONDIÇÕES ENCONTRADAS NA PESQUISA	146
37	CARACTERÍSTICAS INFECCIOSAS DOS PRINCIPAIS AGENTES ETIOLÓGICOS DA DIARRÉIA	159
38	ESGOTAMENTO SANITÁRIO - RISCO RELATIVO NA ANÁLISE UNIVARIADA	160
39	ESTATÍSTICA DE CONFIABILIDADE PARA OS VETORES	164
40	VARIÁVEIS CONFUNDÍVEIS - RR BRUTOS E AJUSTADOS (IC A 95%)	167
41 ORDENAÇÃO DAS INTERVENÇÕES SEGUNDO A MAGNITUDE DO RR E DO RA E DO COEFICIENTE PADRONIZADO β^* 174
42 DISTRIBUIÇÃO DE FREQUÊNCIAS, RISCO RELATIVO E TESTES DE SIGNIFICÂNCIA - VARIÁVEIS QUALITATIVAS 207
43 ANÁLISE BIVARIADA - TESTES DE VARIÁVEIS CONFUNDÍVEIS E DE MODIFICAÇÃO DE EFEITO 214
44 DEFINIÇÃO DAS CATEGORIAS - ANÁLISE MULTIVARIADA 219
45 RISCO ATTRIBUÍVEL - RESULTADOS 270
46 TESTE DE CONFIABILIDADE - COEFICIENTE "KAPPA" E p POR VARIÁVEL 274
RESUMO

Desenvolveu-se um delineamento epidemiológico, visando a identificar associações entre cenários de saneamento e morbidade por diarreia em crianças de até cinco anos de idade. Objetivou-se empregar a técnica como subsídio para o estabelecimento de prioridades de intervenção em saneamento, testando-a na área urbana da sede municipal de Betim-MG. Adotou-se a variante caso-coorte do método caso-controle, com uma amostra de 997 casos, constituídos por crianças que procuraram a rede de saúde local com relato de diarreia, e de 999 controles, sorteados dentre o universo populacional da área abrangida. Coletaram-se, através de inquérito domiciliar, informações sobre potenciais fatores de confusão e sobre exposições a ausência de serviços de saneamento e a hábitos higiénicos inadequados. Os dados foram tratados estatisticamente, em sequência através de técnicas de análise univariada, bivariada e multivariada, esta última por meio de regressão logística. Diversas das exposições analisadas revelaram-se significativamente associadas com a diarreia. A definição de prioridades de intervenção foi avaliada por intermédio dos valores de três distintos indicadores: a magnitude do risco relativo ajustado, a magnitude do risco atribuível e o coeficiente padronizado do risco relativo ajustado. Pela ordem, as seguintes exposições mostraram-se prioritárias: a) educação sanitária, abrangendo um conjunto de cinco diferentes medidas de higiene; b) disposição adequada de esgotos sanitários; c) implantação de reservatórios domiciliares; d) ampliação da abrangência da coleta de lixo e e) controle de inundações nos lotes. O delineamento empregado configurou-se satisfatório para o fim pretendido, permitindo ainda vislumbrar um protocolo simplificado, passível de ser adotado com maior factibilidade, em ações de planejamento na área de saneamento.
1- INTRODUÇÃO

A ausência de instrumentos de planejamento relacionados à saúde pública constitui uma importante lacuna em programas governamentais no campo do saneamento no Brasil. Essa limitação tem sido objeto de reconhecimento por parte de técnicos (CYNAMON, 1986; FREITAS et al., 1990; ROMANE, 1993) e do próprio Poder Público. Neste particular, um exemplo nítido das tendências legais e institucionais é representado pela disposição da Constituição do Estado de Minas Gerais (MINAS GERAIS, 1989), em seu artigo 192, onde é estabelecido que "a execução de programa de saneamento básico, estadual ou municipal, será precedida de planejamento que atenda aos critérios de avaliação do quadro sanitário e epidemiológico". A própria Lei nº 11.720, de 28/12/94 (MINAS GERAIS, 1994), relativa à política estadual de saneamento, determina que esta política considerará "a adoção de indicadores e parâmetros sanitários, epidemiológicos e sócio-econômicos como norteadores das ações de saneamento básico".

Essas definições introduzem-se em um plano nacional que reclama por uma diferente postura na gestão das políticas públicas, na qual a participação popular, o controle social e o exercício da democracia mostram-se componentes indispensáveis. Nesse sentido, o emprego da avaliação dos efeitos das intervenções, como critério de planejamento e de priorização da alocação do recurso público, conforme previsto na referida legislação, sintoniza-se com a necessidade de que critérios socialmente ilegítimos deixem de presidir tais decisões.

A despeito da compreensão quanto à necessidade de se empregar a variável saúde pública no planejamento de programas de saneamento, a sistematização de procedimentos ainda encontra-se incipiente no país. Por um lado, existe um número muito reduzido de estudos realizados, investigando a associação entre medidas de saneamento e seu reflexo sobre a saúde pública, tendo por campo de abrangência a realidade brasileira. Por outro, não há uma orientação, devidamente testada, de delineamentos epidemiológicos aplicáveis ao planejamento das ações de saneamento, embora a sustentação conceitual e metodológica para tanto esteja consolidada, encontrando-se descrita nos textos clássicos de Epidemiologia.

No plano internacional, o número de investigações, relacionadas à avaliação da magnitude do impacto de intervenções em saneamento sobre a saúde, vem
ultimamente aumentando de maneira consistente na literatura. Especial atenção tem sido dedicada ao aperfeiçoamento dos delineamentos empregados, lastreado no reconhecimento de que a maioria dos trabalhos existentes apresenta uma série de falhas metodológicas, comprometendo suas conclusões (BLUM & FEACHEM, 1983).

Artigos de revisão de literatura têm atestado os referidos problemas, como na análise de uma série de 95 artigos publicados, desenvolvida por ESREY & HABICHET (1986), onde foram detectadas falhas metodológicas na maioria deles, abrangendo desde controle inadequado de variáveis, falta de tratamento dos fatores de confusão e falhas na análise estatística, até o incorreto dimensionamento do tamanho das amostras.

Com relação ao método epidemiológico mais recomendado, identifica-se uma tendência mais recente de se adotar o caso-controle em investigações deste tipo. Basicamente, os argumentos apresentados registram que os estudos caso-controle, se comparados com os estudos experimentais, quase-experimentais, prospectivos ou seccionais (BRISCOE et al., 1986):

- demandam amostras de menor dimensão;
- apresentam maior validade na identificação da exposição e da enfermidade;
- demandam uma avaliação das condições de funcionamento e de utilização dos sistemas de saneamento;
- podem ser executados com maior rapidez e facilidade;
- dificilmente incorrem em problemas éticos.

Algumas questões, entretanto, permanecem ainda obscuras, no que se refere ao emprego de estudos caso-controle em avaliações de impacto sobre a saúde. Destacam-se o comportamento de estudos que procuram investigar variáveis com múltiplas categorias (BRISCOE et al., 1988); um possível respaldo teórico para a utilização de tamanhos inferiores de amostras (BRISCOE et al., 1988) e o correto tratamento dos biás e das variáveis confundíveis na análise dos dados coletados (ESREY & HABICHET, 1986).

Além dos aspectos mencionados, é pertinente lembrar que o conhecimento universal da própria relação entre o saneamento e a saúde pública ainda necessita de aprofundamento. Em uma avaliação dos progressos verificados após a Década Internacional do Abastecimento de Água Potável e do Esgotamento Sanitário (1981-
1990), instituída pela ONU, CAIRNCROSS (1989) afirma ser surpreendente ainda não haver um consenso científico sobre a relação entre as ações de abastecimento de água e de disposição de excretas e as enfermidades diarréicas endêmicas.

Verifica-se, portanto, a coexistência de uma importante lacuna na sistematização de procedimentos metodológicos, sobretudo adequados às condições nacionais, para a elaboração de estudos epidemiológicos relacionados ao saneamento, com a persistência de dúvidas conceituais sobre a própria associação entre saneamento e saúde. Nesse contexto, então, apoiou-se a justificativa básica da presente pesquisa, a qual foi desenvolvida com os seguintes objetivos centrais:

- desenvolver um delineamento epidemiológico, aplicável à realidade brasileira, para avaliação do impacto sobre a saúde de intervenções em saneamento;
- desenvolver um método de análise dos resultados do estudo, de tal forma que possa constituir em subsídio para o processo de decisão sobre prioridades de intervenção;
- testar o delineamento em uma cidade de médio porte no Estado de Minas Gerais;
- avaliar criticamente o resultado da pesquisa, buscando o aperfeiçoamento do modelo para a generalização de sua aplicação à realidade nacional, de maneira que possa se constituir em instrumento de planejamento.
2- REVISÃO DA LITERATURA

2.1- MODELOS DE ASSOCIAÇÃO ENTRE CONDIÇÕES DE SANEAMENTO E SAÚDE

2.1.1- ASPECTOS HISTÓRICOS

O reconhecimento da importância do saneamento e de sua associação com a saúde do Homem remonta das mais antigas civilizações. Ruínas de uma grande civilização, que se desenvolveu ao norte da Índia há cerca de 4.000 anos atrás, indicam evidências de hábitos sanitários, incluindo a presença de banheiros e de esgotos nas construções, além de drenagem nas ruas (ROSEN, 1994). É igualmente de grande significado histórico a visão de saneamento de outros povos, como o registro da preocupação com o escoamento da água no Egito, os grandes aquedutos e os cuidados com o destino dos dejetos na cultura creto-micênica e as noções de engenharia sanitária dos quichuas (ROSEN, 1994).

Existem relatos, do ano 2.000 antes de Cristo, de tradições médicas, na Índia, recomendando que "a água impura deve ser purificada, pela fervura sobre um fogo, pelo aquecimento no sol, mergulhando um ferro em brasa dentro dela, ou pode ainda ser purificada por filtração em areia ou cascalho, e então resfriada" (USEPA, 1990).

No desenvolvimento da civilização greco-romana, são inúmeras as referências às práticas sanitárias e higiênicas vigentes e à construção do conhecimento relativo à associação entre esses cuidados e o controle das doenças. Significativo, nesse aspecto, constituem os escritos hipocráticos, a partir do século IV a.C., como o livro Ares, águas e lugares, considerado um tratado sobre ecologia humana (CAPRA, 1982). Nele, localiza-se o primeiro esforço sistemático para apresentar as relações causais entre fatores do meio físico e doença. Essa obra forneceu o sustentáculo teórico para a compreensão das doenças endêmicas e epidêmicas, permanecendo suas postulações sem mudanças fundamentais até o século XIX (ROSEN, 1994). Segundo DUBOS (1968), citado por CAPRA (1982), "a importância das forças ambientais para os problemas da biologia, da medicina e da sociologia humanas nunca foi formulada com maior amplitud ou com visão mais penetrante do que na aurora da história científica".
Na trajetória mais recente da saúde pública, SNOW (1990), em sua histórica pesquisa concluída em 1954, já comprovava cientificamente a associação entre a fonte de água consumida pela população de Londres e a incidência de cólera. A despeito dessa demonstração, influentes sanitaristas, como Chadwick, já defendiam a importância do saneamento, fundamentados na teoria miasmática. A investigação de Snow ocorreu cerca de 20 anos antes do início da Era Bacteriológica, com Pasteur, Koch e outros cientistas (ROSEN, 1994).

Além de investigações pontuais, o próprio processo de implantação de sistemas coletivos de saneamento, iniciado no século passado, tem apontado para um progressivo reflexo positivo sobre a saúde, independente de um respaldo científico para as conclusões. No Estado de Massachusetts (Estados Unidos), o decréscimo da mortalidade por febre tifoide e a diminuição da parcela populacional sem acesso ao abastecimento de água apresentaram uma tendência histórica, no período 1885-1940, com impressionante similaridade, conforme reproduzido na FIG. 1 (FAIR et al., 1966, segundo McJUNKIN, 1986). Da mesma forma, PRESTON & WALLE (1978), segundo BRISCOE (1987), mostraram que, na França do século XIX, verificou-se um incremento na esperança de vida, nas cidades de Lyon, Pans e Marselha, em um período imediatamente posterior à melhoria dos serviços de abastecimento de água e esgotamento sanitário locais (FIG. 2). Em Costa Rica, REIFF (1981), segundo McJUNKIN (1986), inferiu uma associação entre a involução da taxa de mortalidade por diarreia e por gastroenterite e a evolução da cobertura populacional por abastecimento de água, a partir da década de 40 (FIG. 3).
FIGURA 1
EVOLUÇÃO DA MORTALIDADE POR FEBRE TIFÓIDE E DO ATENDIMENTO POR ABASTECIMENTO DE ÁGUA - MASSACHUSETTS (1855-1940)

FIGURA 2
EVOLUÇÃO DA MORTALIDADE E MELHORIAS NOS SERVIÇOS DE ABASTECIMENTO DE ÁGUA E ESGOTAMENTO SANITÁRIO - FRANÇA (SÉC. XIX)
FIGURA 3
EVOLUÇÃO DA MORTALIDADE POR DIARRÉIA E POR GASTROENTERITE E DO ATENDIMENTO POR ABASTECIMENTO DE ÁGUA - COSTA RICA (1940-1980)

Em prosseguinte aos estudos que buscavam relacionar os benefícios do saneamento sobre a saúde, na década de 60 verificou-se uma certa perplexidade diante da constatação quanto às dificuldades em se detectar esses benefícios e até mesmo perante algumas dúvidas quanto à sua existência (CAIRNCROSS, 1989).

Segundo BRISCOE (1987), em meados da década de 70 predominava a visão de que avanços nas áreas de abastecimento de água e de esgotamento sanitário nos países em desenvolvimento resultariam na redução das taxas de mortalidade, a exemplo do ocorrido nos países industrializados no século passado. No entanto, a política para a área de saúde, emanada dos órgãos internacionais de fomento a partir daí, excluiu dos programas de atenção primária à saúde tais intervenções. Esta
deliberação baseou-se no falacioso argumento de que o custo de cada disfunção infantil, prevenida através de programas de abastecimento de água e esgotamento sanitário, configura-se muito superior ao custo correspondente ao de outras medidas de atenção primária, como a terapia de reidratação oral, vacinas, o tratamento contra a malária e o aleitamento materno.

O argumento econômico, empregado para privilegiar essas outras ações em detrimento das intervenções ambientais, equivocadamente considera os custos brutos dos programas de abastecimento de água e esgotamento sanitário e não seus custos líquidos. A comparação econômica correta seria obtida deduzindo-se, dos custos brutos dos sistemas de saneamento, os valores já tradicionalmente pagos pelo serviço por parte da população, na forma de tarifas e taxas (BRISCOE, 1984b).

Com essa motivação, estudos foram desenvolvidos a partir do inicio da década de 80, buscando formular mais rigorosamente os mecanismos responsáveis pelo comprometimento das condições de saúde da população, na ausência de condições adequadas de saneamento. Lamentavelmente, quase a totalidade das pesquisas voltou-se para as áreas contempladas pela Década Internacional - o abastecimento de água e o esgotamento sanitário -, mantendo ainda bastante obscuros os mecanismos envolvidos com a limpeza urbana, a drenagem pluvial e a presença de vetores, por exemplo.

Mesmo com relação a essas áreas mais estudadas, alguns autores apontam questões ainda não esclarecidas, a exemplo das seguintes afirmativas (CAIRNCROSS, 1989):

"Clarear nosso entendimento sobre as relações entre o abastecimento de água e o esgotamento sanitário, por um lado, e doenças infecciosas, por outro, enfaticamente não é uma questão de 'sintonia fina'... É surpreendente que ainda não haja um consenso científico sobre se o abastecimento de água afeta a enfermidade diarrética endêmica como um todo e, se o faz, através de qual intervenção isto ocorre: melhorias na qualidade da água, em sua quantidade ou em ambas... Com relação à disposição de excretas, nossa ignorância é também muito grande."
2.1.2- ABASTECIMENTO DE ÁGUA E ESGOTAMENTO SANITÁRIO

Diversos modelos têm sido propostos para explicar a relação entre ações de abastecimento de água e de esgotamento sanitário e a saúde, enfocando distintos ângulos da cadeia causal.

SHUVAL et al. (1981) desenvolveram a teoria do limiar-saturação para explicar a influência do nível sócio-econômico da população sobre a relação entre as condições de saneamento e a saúde. A FIG. 4 reproduz graficamente o modelo proposto, o qual obteve uma validação preliminar a partir dos dados de 1962, relativos a 65 países em desenvolvimento. Conforme pode-se inferir, em populações com condições sócio-econômicas extremamente baixas ou extremamente elevadas, o efeito de intervenções em saneamento provocaria um impacto desprezível sobre a saúde.

FIGURA 4
REPRESENTAÇÃO ESQUEMÁTICA DA TEORIA DO LIMIAR-SATURAÇÃO
EFEITO DO SANEAMENTO SOBRE A SAÚDE, EM FUNÇÃO DO NÍVEL SÓCIO-ECONÔMICO

FONTE: SHUVAL et al. (1981)
BRISCOE (1984a) elaborou um importante raciocínio para a compreensão do efeito obtido após a eliminação de apenas parte das múltiplas vias de transmissão de uma determinada doença. Segundo seu modelo, em doenças que apresentam uma relação dose-resposta log-linear, como a diarreia, a obstrução de uma importante via de transmissão pode redundar em uma redução muito inferior à esperada, na probabilidade de infecção. A teoria adere de forma satisfatória aos estudos sobre a transmissão da cólera em Bangladesh. BRISCOE (1987), a partir desse estudo, defende que as intervenções em abastecimento de água e em esgotamento sanitário são "necessárias mas não suficientes". O diagrama apresentado na FIG. 5 ilustra uma situação hipotética, cujos resultados são os visualizados na TAB. 1.

![Diagrama]

FIGURA 5
SIMULAÇÃO DA TRANSMISSÃO FECO-ORAL DE AGENTES PATOGÊNICOS

TABELA 1
SIMULAÇÃO DO EFEITO DA ELIMINAÇÃO DE DIFERENTES VIAS DE TRANSMISSÃO SOBRE A INCIDÊNCIA DE UMA ENFERMIDADE

<table>
<thead>
<tr>
<th>VIAS DE EXPOSIÇÃO</th>
<th>ORGANISMOS QUE CONTINUAM TRANSMITINDO (%)</th>
<th>CASOS QUE CONTINUAM OCORRENDO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Vias A + B + C</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(2) Eliminação unicamente da via A</td>
<td>30</td>
<td>74</td>
</tr>
<tr>
<td>(3) Eliminação da via B, mantendo a via A</td>
<td>72</td>
<td>93</td>
</tr>
<tr>
<td>(4) Eliminação da via B, após a eliminação da via A</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

FONTE: BRISCOE (1987)
Pode-se observar que, assumindo por hipótese a via A como uma medida de saneamento, responsável por 70% dos organismos transmitidos, sua eliminação implicaria na redução de apenas 26% da incidência da doença. Esta situação ocorre, em função da relação log-linear verificada entre a carga de patogênicos e a incidência da doença.

BRISCOE (1985) postula ainda que intervenções ambientais sistêmicas, como o abastecimento de água e o esgotamento sanitário, apresentam efeitos a longo prazo sobre a saúde substancialmente superiores aos de intervenções médicas. Baseado em uma simulação de dados demográficos de Lyon (França), entre 1816 e 1905, prevê que as intervenções ambientais podem prevenir cerca de quatro vezes mais mortes e elevar a expectativa de vida sete vezes mais, que as intervenções de natureza biomédica. O mesmo autor (BRISCOE, 1987) afirma que tal comportamento sugere um efeito multiplicador dos programas de abastecimento de água e esgotamento sanitário.

CVJETANOVIC (1986), estabelecendo uma nova ótica para a questão, caracteriza como estreitos os modelos que relacionam as ações de saneamento com um grupo definido de doenças, como as enfermidades diarreicas. Afirma que tal enfoque ignora o caráter amplo da definição de saúde formulada pela Organização Mundial da Saúde, ao avaliar impactos sobre doenças e não sobre a saúde propriamente. Reconhece, entretanto, os formidáveis obstáculos metodológicos para uma abordagem holística, que privilegie sobretudo os fatores sócio-econômicos. Esquematicamente, a FIG. 6 ilustra o modelo proposto pelo autor.
FIGURA 6
EFEITOS DIRETOS E INDIRETOS DO ABASTECIMENTO DE ÁGUA E DO ESGOTAMENTO SANITÁRIO SOBRE A SAÚDE
ESQUEMA CONCEITUAL
A argumentação anterior apóia-se no modelo causal de mortalidade infantil, desenvolvido para Sri-Lanka (WAXLER et al., 1985), composto por uma teia causal, onde atuam preditores culturais, sócio-econômicos e médicos (FIG. 7). Na conclusão desse estudo, explica-se a mortalidade infantil em Sri-Lanka da seguinte forma (WAXLER et al., 1985):

"O status dos grupos minoritários resulta em pobreza, o que impede a família de possuir instalações sanitárias seguras, causando morte infantil. A mortalidade infantil em Sri-Lanka não é, portanto, simplesmente um problema médico, para ser assumido pelos programas de saúde pública, nem tampouco é um problema econômico, que possa ser resolvido pela criação de empregos, mas é melhor que seja encarada como um problema da estrutura de toda a sociedade."

FIGURA 7

MODELO CAUSAL DA MORTALIDADE INFANTIL NO SRI-LANKA

Outros autores revisaram estudos de caso publicados, com o intuito de quantificar o efeito do abastecimento de água e do esgotamento sanitário sobre a saúde.

Nesse sentido, ESREY et al. (1985), revisando 67 estudos de caso, inferiram os resultados agregados expostos nas TAB. 2 e 3.
Posteriormente, ESREY et al. (1991) verificaram a redução de enfermidades selecionadas e particularmente da diarreia, a partir da consulta a 144 estudos (TAB. 4 e 5).

TABELA 2
REDUÇÃO PERCENTUAL NA MORBIDADE POR DIARRÉIA ATRIBUÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA OU NO ESGOTAMENTO SANITÁRIO - SISTEMATIZAÇÃO DE 1985

<table>
<thead>
<tr>
<th>TIPO DE INTERVENÇÃO</th>
<th>NÚMERO DE RESULTADOS</th>
<th>PERCENTUAL DE REDUÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todas as intervenções</td>
<td>53</td>
<td>Mediana 22, Faixa 0 - 100</td>
</tr>
<tr>
<td>Melhoria na qualidade da água</td>
<td>9</td>
<td>Mediana 16, Faixa 0 - 90</td>
</tr>
<tr>
<td>Melhoria na disponibilidade de água</td>
<td>17</td>
<td>Mediana 25, Faixa 0 - 100</td>
</tr>
<tr>
<td>Melhoria na qualidade e na disponibilidade da água</td>
<td>8</td>
<td>Mediana 37, Faixa 0 - 82</td>
</tr>
<tr>
<td>Melhoria no esgotamento sanitário</td>
<td>10</td>
<td>Mediana 22, Faixa 0 - 48</td>
</tr>
</tbody>
</table>

FONTE: ESREY et al. (1985)

TABELA 3
REDUÇÃO PERCENTUAL NA MORBIDADE OU NA INFECÇÃO POR PATOGÊNICOS DIVERSOS, ATRIBUÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA OU NO ESGOTAMENTO SANITÁRIO

<table>
<thead>
<tr>
<th>DOENÇA OU INFECÇÃO</th>
<th>NÚMERO DE RESULTADOS</th>
<th>PERCENTUAL DE REDUÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrio cholerae</td>
<td>11</td>
<td>Mediana 41, Faixa 0 - 91</td>
</tr>
<tr>
<td>Shigella</td>
<td>27</td>
<td>Mediana 48, Faixa 0 - 81</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>17</td>
<td>Mediana 2, Faixa 0 - 80</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>10</td>
<td>Mediana 0, Faixa 0 - 20</td>
</tr>
</tbody>
</table>

FONTE: ESREY et al. (1985)
TABELA 4
REDUÇÃO PERCENTUAL NA MORBIDADE POR DIARRÉIA, ATRIBUÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA OU NO ESGOTAMENTO SANITÁRIO - SISTEMATIZAÇÃO DE 1991

<table>
<thead>
<tr>
<th>INTERVENÇÃO</th>
<th>TODOOS OS ESTUDOS</th>
<th>ESTUDOS MAIS RIGOROSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n(1)</td>
<td>Redução (%)</td>
</tr>
<tr>
<td>Abastecimento de água e esgotamento sanitário</td>
<td>7/11</td>
<td>20</td>
</tr>
<tr>
<td>Esgotamento sanitário</td>
<td>11/30</td>
<td>22</td>
</tr>
<tr>
<td>Qualidade e quantidade de água</td>
<td>22/43</td>
<td>16</td>
</tr>
<tr>
<td>Qualidade da água</td>
<td>7/16</td>
<td>17</td>
</tr>
<tr>
<td>Quantidade de água</td>
<td>7/15</td>
<td>27</td>
</tr>
</tbody>
</table>

FONTE: ESREY et al. (1991)
(1) Número de estudos para os quais é possível a determinação da redução da morbidade / Número total de estudos

TABELA 5
REDUÇÃO PERCENTUAL NA MORBIDADE E MORTALIDADE POR DOENÇAS SELECIONADAS, ATRIBUÍDA A MELHORIAS NO ABASTECIMENTO DE ÁGUA E NO ESGOTAMENTO SANITÁRIO

<table>
<thead>
<tr>
<th>DOENÇA</th>
<th>TODOOS OS ESTUDOS</th>
<th>ESTUDOS MAIS RIGOROSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Redução mediana(1) (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascandiasiase</td>
<td>11</td>
<td>28 (0-83)</td>
</tr>
<tr>
<td>Doenças diarréicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbidade</td>
<td>49</td>
<td>22 (0-100)</td>
</tr>
<tr>
<td>Mortalidade</td>
<td>3</td>
<td>65 (43-79)</td>
</tr>
<tr>
<td>Ancilostomiase</td>
<td>9</td>
<td>4 (0-100)</td>
</tr>
<tr>
<td>Esquistossomose</td>
<td>4</td>
<td>73 (59-87)</td>
</tr>
<tr>
<td>Tracoma</td>
<td>13</td>
<td>50 (0-91)</td>
</tr>
<tr>
<td>Mortalidade infantil</td>
<td>9</td>
<td>60 (0-82)</td>
</tr>
</tbody>
</table>

FONTE: ESREY et al. (1991)
(1) Os números entre parênteses correspondem à faixa de variação.
2.1.3- OUTRAS AÇÕES DE SANEAMENTO

A higiene pessoal e domiciliar, incluindo um amplo rol de medidas, tem sido investigada enquanto fator de risco para doenças redutíveis pelo saneamento.

FEACHEM (1984) desenvolveu uma extensiva avaliação do efeito da higiene pessoal e domiciliar sobre o controle da diarreia infantil, a partir de estudos realizados em hospitais, centros de saúde e comunidades. O hábito higiénico mais estudado é a lavagem das mãos. O autor avaliou três estudos de caso mais significativos, para a incidência de valores quantitativos: o primeiro em Bangladesh, o segundo nos Estados Unidos, ambos analisando lavagem das mãos, e o terceiro na Guatemala, este referente à melhoria de diversos aspectos da higiene doméstica e pessoal. Concluiu, a partir dos três estudos, que a melhoria dos hábitos higiênicos pode reduzir a morbidade por diarreia em 14 a 48%. E, além disto, que essa melhoria pode ser atingida mediante programas de educação sanitária.

ESREY et al. (1991) avaliaram seis estudos de caso, relacionados com a melhoria na higiene, incluindo, entre outras medidas, a lavagem das mãos, a disposição de resíduos e o local empregado para defecar. Concluíram por uma redução esperada de 33% na morbidade por diarreia, mediante o aperfeiçoamento das práticas higiénicas.

LONERGAN & VANSICKLE (1991) avaliaram um conjunto de medidas sanitárias e hábitos higiênicos, enquanto fatores de risco para a diarreia na Malásia. Após um estudo seccional, composto por inquérito em 268 moradias, concluíram pela existência de associação entre diversas variáveis e a diarreia, segundo diferentes níveis de significância, conforme exposto na TAB.6. Tal investigação permite identificar numerosos fatores associados à diarreia, na realidade estudada, embora não seja adequada a consideração do valor do nível de significância para o estabelecimento de uma ordenação dos riscos envolvidos.
TABELA 6
ASSOCIAÇÃO ENTRE FATORES DE RISCO E DIARRÉIA,
SEGUNDO DIFERENTES NÍVEIS DE SIGNIFICÂNCIA

<table>
<thead>
<tr>
<th>ALTAMENTE SIGNIFICATIVO (α = 0,001)</th>
<th>SIGNIFICATIVO (α = 0,01)</th>
<th>LIGEIRAMENTE SIGNIFICATIVO (α = 0,05)</th>
<th>NÃO SIGNIFICATIVO (α > 0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raça*</td>
<td>Água tratada</td>
<td>Tomeira em casa</td>
<td>Número de pessoas na casa</td>
</tr>
<tr>
<td>Freqüência de fervura da água</td>
<td>Fonte de água tratada</td>
<td>Tomeira na cozinha</td>
<td>Cidade</td>
</tr>
<tr>
<td>Tipo de vaso</td>
<td>Quintal livre de lixo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonte de água para higiene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpeza da cozinha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpeza da criança</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* associação confundida pelo diferenciado perfil da origem da água, entre chineses e malásios, comparados com indianos.

FONTE: LONERGAN & VANSICKLE (1991)

ITTIRAVIVONGS et al. (1992) desenvolveram um estudo seccional na Tailândia onde a variável de exposição empregada foi constituída por um score qualitativo, determinado a partir de um conjunto de características higiênicas, distribuídas por sete grandes grupos:

- abastecimento de água;
- características e conservação das fossas;
- disposição de resíduos sólidos;
- higiene alimentar;
- controle de insetos e roedores;
- higiene da habitação;
- disposição das águas servidas.

Foram investigadas 2.690 moradias. Estas foram categorizadas, segundo cada grupo de variáveis, em higiênicas ou não higiênicas, caso apresentassem um score respectivamente superior ou inferior a 60% de atendimento aos itens componentes dos grupos. Todos os grupos individualmente mostraram-se significativamente associados com parasitas nas fezes. Quanto à presença de bactérias patogênicas
nas fezes, apenas higiene das habitações, individualmente, e todos os grupos agrupados mostraram-se significativamente associados.

Com relação às outras medidas de saneamento, conforme já acentuado, verifica-se uma visível lacuna na literatura. Nessa perspectiva, CAIRNCROSS (1989) reconhece a importância da drenagem pluvial e da disposição de resíduos sólidos, salientando que o próprio Banco Mundial e outros bancos de desenvolvimento regional, embora venham aplicando recursos consideráveis nessas áreas, tem suportado minimamente pesquisas sobre os temas. Considera, por exemplo, que a pesquisa sobre tecnologia apropriada nesses campos, nas linhas desenvolvidas nos últimos dez anos para o abastecimento de água e o esgotamento sanitário, simplesmente iniciou.

No campo da limpeza pública, localizam-se algumas referências, que contribuem para iniciar a formulação de um modelo causal, ainda a ser construído e validado.

TCHOBANOGLOUS et al. (1977) consideram bastante clara a relação entre a saúde pública e o acondicionamento, a coleta e a disposição dos resíduos sólidos. As autoridades sanitárias dos Estados Unidos estabeleceram uma relação entre 22 doenças e o inadequado manuseio dos resíduos sólidos (HANKS, 1967; segundo TCHOBANOGLOUS et al., 1977).

NAJM (s.d.) exibe um esquema das vias de contato lixo-homem (FIG. 8) que, sinteticamente, explica as trajetórias através das quais pode ocorrer transmissão de doenças oriundas da disposição inadequada dos resíduos sólidos urbanos. Note-se que, dada a diversidade de vias e, especialmente, a ação dos vetores - biológicos e mecânicos - o raio de influência e os agravos sobre a saúde mostram-se de difícil caracterização.
FIGURA 8
ESQUEMA DAS VIAS DE CONTATO HOMEM-lixo

Avaliando precisamente a ocorrência de vetores, DANIEL et al. (1989) pesquisaram espécies de artrópodes, nos dois pontos de disposição final de lixo no Cairo (Egito). Foram identificadas 56 espécies, tendo sido destacadas as seguintes, por sua importância epidemiológica:

- pulgas (Xenopsylla cheopis e Ctenocephalides felis felis) em roedores (Rattus norvegicus);
- carrapatos (Rhipicephalus sanguineus);
- moscas sianantrópicas (Musca domestica vicina, Musca sorbens e Piophil a casei).

ELLIOTT et al. (1993) desenvolveram um estudo em Ontário (Canadá) sobre efeitos psico-sociais provocados pela proximidade de moradias a pontos de disposição final de resíduos sólidos urbanos. O trabalho conclui por uma significativa influência da distância ao local onde se processa o lixo, sobre variáveis relacionadas ao stress ambiental, definido como "um processo através do qual eventos ambientais ameaçam, prejudicam ou desafiem o bem estar ou a existência de um organismo e
através do qual o organismo responde a essa ameaça" (BAUM, citado por ELLIOTT et al., 1993). Na cadeia causal determinada pela referida pesquisa, o estado geral de saúde do indivíduo representa um elo intermediário entre variáveis externas, como características individuais e exposição ao lixo, e os efeitos.

2.2 - A CLASSIFICAÇÃO AMBIENTAL DAS ENFERMIDADES INFECCIOSAS

No final da década de 70, esforços foram empreendidos no sentido de se estudarem as doenças infecciosas, sob o enfoque das estratégias mais adequadas para seu controle. Nessa visão, as doenças são classificadas tendo por base suas vias de transmissão e seu ciclo, distintamente da classificação biológica clássica, que agrupa as doenças segundo o agente: vírus, bactéria, protozoário ou helminto (FEACHEM et al., 1983a).

A classificação ambiental das infecções relacionadas com a água, segundo CAIRNCROSS & FEACHEM (1990), origina-se da compreensão dos mecanismos de transmissão, que se agrupam em quatro categorias:

- **transmissão hídrica**: ocorre quando o patogênico encontra-se na água que é ingerida;
- **transmissão relacionada com a higiene**: identificada com aquela que pode ser interrompida pela implantação de higiene pessoal e doméstica;
- **transmissão baseada na água**: caracterizada quando o patogênico desenvolve parte de seu ciclo vital em um animal aquático;
- **transmissão através de um inseto vetor**: na qual, insetos, que procriam na água ou cuja picadura ocorre próximo a ela, são os transmissores.

Em função da caracterização dos mecanismos de transmissão, a classificação ambiental das doenças relacionadas com a água prevê quatro categorias, conforme apresentado na TAB. 7.
<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>INFECÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Feco-oral (transmissão hidrana ou relacionada com a higiene)</td>
<td>Diarréias e disenterias
Disenteria amebiana
Balantidiasis
Enterite campylobacteriana
Côlera
Diarréia por Escherichia coli
Giardiasis
Diarréia por rotavirus
Salmonelesse
Disenteria bacilar
Febres entéricas
Febre tifoide
Febre paratifóide
Poliomielite
Hepatite A
Leptospirose
Ascaridiasis
Tricuriase</td>
</tr>
<tr>
<td>2. Relacionada com a higiene
(a) Infecções da pele e dos olhos</td>
<td>Doenças infecciosas da pele
Doenças infecciosas dos olhos</td>
</tr>
<tr>
<td></td>
<td>(b) Outras
Tifo transmitido por pulgas
Febre recorrente transmitida por pulgas</td>
</tr>
<tr>
<td>3. Baseada na água
(a) Por penetração na pele</td>
<td>Esquistossomose</td>
</tr>
<tr>
<td></td>
<td>(b) Por ingestão
Disfilobotriase e outras infecções por helmintos</td>
</tr>
<tr>
<td>4. Transmissão através de inseto vetor
(a) Picadura próximo à água</td>
<td>Doença do sono</td>
</tr>
<tr>
<td></td>
<td>(b) Prociam na água
Filariose
Malária
Arbovírus
Febre amarela
Dengue
Leishmaniose*</td>
</tr>
</tbody>
</table>

* incluído pelo autor

FONTE: CAIRNCROSS & FEACHEM (1990)
Com o mesmo raciocínio, foi desenvolvida a classificação ambiental das infecções relacionadas aos excretas. Nessa classificação, parte-se do conceito de que, na transmissão de uma doença originária de excretas, as seguintes variáveis influenciam o processo:

![Diagrama de classificação ambiental das infecções](image)

FONTE: FEACHEM et al. (1983)

FIGURA 9
VARIÁVEIS DETERMINANTES DA TRANSMISSÃO DAS INFECÇÕES EXCRETADAS

A TAB. 8 reproduz a caracterização das seis categorias que compõem a classificação ambiental das infecções relacionadas aos excretas.

Assim, desenvolvidas essas classificações, o entendimento da transmissão das doenças relacionadas com a água e relacionadas com os excretas passa a constituir um instrumento de planejamento das intervenções em saneamento, com vistas à otimização de seu impacto sobre a saúde.

2.3- ESTUDOS DE IMPACTO DAS INTERVENÇÕES EM SANEAMENTO SOBRE A SAÚDE

A aplicabilidade dos estudos epidemiológicos, visando a avaliar o impacto sobre a saúde de intervenções ou de condições de saneamento, tem sido objeto de debates. Questionamentos têm sido apresentados quanto à viabilidade econômica e operacional de tais estudos, à possibilidade de se comprovarem associações e à superação dos problemas metodológicos a eles inerentes.
TABELA 8
CLASSIFICAÇÃO AMBIENTAL DAS INFECÇÕES RELACIONADAS COM OS EXCRETAS

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>CARACTERÍSTICA EPIDEMIOLÓGICA</th>
<th>INFECÇÃO</th>
<th>VIA DOMINANTE DE TRANSMISSÃO</th>
<th>PRINCIPAIS MEDIDAS DE CONTROLE</th>
</tr>
</thead>
</table>
| 1. Doenças feco-órais não bacterianas | Não latentes
Baixa dose infecciosa | Enterobiase
Infecções enteroviróticas
Hymenolepilase
Amebiase
Giardiase
Balantidiase | Pessoal
Doméstica | Abastecimento doméstico de água
Educação sanitária
Melhorias habitacionais
Instalação de fossas |
| 2. Doenças feco-órais bacterianas | Não latentes
Média ou alta dose infecciosa
Moderadamente persistentes
Capazes de se multiplicarem | Febre tifoide e paratifoide
Salmonelose
Disenteria bacilar
Cólera
Diarréia por E.coli
Entérite campylobacteriana | Pessoal
Doméstica
Água
Alimentos | Abastecimento, doméstico de água
Educação sanitária
Melhorias habitacionais
Instalação de fossas
Tratamento dos excretas antes do lançamento ou do reuso |
| 3. Helmíントs do solo | Latentes
Persistentes
S/ hospedeiro intermediário | Ascaríase
Tricúria
Ancilostomiasis | Jardim
Campos
Culturas agrícolas | Instalação de fossas
Tratamento dos excretas antes da aplicação no solo |
| 4. Teniasis | Latentes
Persistentes
C/ hospedeiro intermediário | Teniasis | Jardim
Campos
Pastagem | Instalação de fossas
Tratamento dos excretas antes da aplicação no solo
Cozimento, Inspeção de carne |
| 5. Helmíントs hídricos | Latentes
Persistentes
C/ hospedeiro intermediário | Esquistossomose e outras doenças provocadas por helmíントs | Água | Instalação de fossas
Tratamento dos excretas antes do lançamento na água
Controle do reservatório animal |
| 6. Doenças transmitidas por insetos |Insetos vetores relacionados aos excretas | Filariase e todas as infecções listadas nas categorias 1 a 5, das quais moscas e baratas podem ser vetores | Vários locais contaminados por fezes, nos quais insetos procriam | Identificação e eliminação dos locais adequados para procriação |

FONTE: FEACHEM et al. (1983a)
Em 1975, um painel de especialistas convocado pelo Banco Mundial concluiu que "estudos longitudinais, de longa duração, grande tamanho e dispendiosos, são provavelmente a única maneira através da qual existe alguma chance de se isolar uma relação quantitativa específica entre abastecimento de água e saúde" (WORLD BANK, 1976, segundo BRISCOE et al., 1986). O mesmo painel recomendou, à luz da conclusão anterior, que tais estudos não fossem realizados, "dados os seus elevados custos, sua limitada possibilidade de sucesso e a aplicação restrita de seus resultados".

BLUM & FEACHEM (1983) realizaram uma avaliação metodológica de estudos de caso. Constataram que, até a época coberta por sua análise, existiam mais de 50 estudos publicados no idioma inglês sobre a relação entre o abastecimento de água e/ou o esgotamento sanitário e algum indicador de saúde. Foram examinados 44 desses estudos, os quais consideram a diarreia como indicador de saúde, tendo sido identificados, em quase todos, um ou mais dos seguintes problemas de metodologia:

1. ausência de grupo controle ou problema de compatibilidade do grupo controle;
2. comparação de uma comunidade com outra comunidade, caracterizando comparação "um a um", com ausência de validade estatística;
3. controle inadequado de variáveis de confusão;
4. baixa confiabilidade na recuperação de informação sobre a ocorrência de diarreia, quando se indaga membros de uma família sobre episódios ocorridos no passado;
5. definição imprecisa do indicador de saúde em análise, mais particularmente, do significado de diarreia no estudo em realização;
6. falha na análise por faixa etária, considerando-se as características específicas da diarreia infantil;
7. falha na análise do uso das instalações de saneamento, considerando-se que não devem ser esperados impactos positivos de sistemas de abastecimento de água e de esgotamento sanitário que não sejam adequadamente utilizados;
8. ausência de ajustamento por sazonalidade, em vista das particularidades temporais da manifestação da diarreia e da utilização das instalações de abastecimento de água e de esgotamento sanitário.

HEBERT & MILLER (1984), porém, discutem alguns aspectos da análise metodológica efetuada. Quanto ao problema (2) - comparação "um a um" - argumentam que, sendo a variável dependente de interesse a morbidade por diarreia em indivíduos e sendo a investigação realizada em indivíduos, estes, por definição,
seriam as unidades de medida, e não cada comunidade. No tocante ao problema (3) - controle de variáveis de confusão -, julgam que esse controle pode ser assegurado mediante o uso de técnicas analíticas mais sofisticadas.

Em 1983, foi realizado um workshop internacional em Bangladesh, sob o título "Medindo o impacto sobre a saúde de programas de abastecimento de água e de esgotamento sanitário", no qual nova compreensão sobre o problema e novas diretrizes foram estabelecidas (BRISCOE et al., 1986). Sobretudo, definiu-se que, ao contrário da conclusão do painel de 1975, é possível se estabelecer uma metodologia para estudos de avaliação de impacto sobre a saúde de medidas de saneamento, isenta das limitações apontadas naquela ocasião.

O workshop recomendou que os estudos devam ser realizados quando satisfizerem as seguintes condições (BRISCOE et al., 1986):

- **Conveniência**
 Condição definida como um favorável balanço entre os benefícios da informação obtida e os custos demandados pelo estudo. Como benefícios, nessa ótica, incluem-se contribuições tanto para um acúmulo global de conhecimentos, quanto para uma aplicação específica, nesse último caso objetivando subsidiar decisões sobre investimentos a serem aplicados.

- **Sensibilidade**
 Significando a capacidade do estudo em identificar um impacto mensurável sobre a saúde.

- **Viabilidade**
 Referindo-se à disponibilidade dos recursos científicos e financeiros necessários. Quanto aos recursos científicos, devem ser considerados: a) métodos para o controle do efeito de variáveis confundíveis; b) o tamanho requerido da amostra; c) o efeito de informações sobre a exposição e a enfermidade, com baixas validade e confiabilidade, e d) o efeito de biais na seleção dos objetos do estudo.

Indicou ainda o workshop um protocolo potencialmente adequado para a realização dos estudos de impacto, no qual sugere-se que a variável relativa à saúde seja a morbidade por diarreia e o delineamento o caso-controle (BRISCOE et al., 1985; BRISCOE et al., 1986).
Após os desenvolvimentos resultantes do *workshop*, foi verificada uma maior receptividade dos organismos internacionais, sobretudo o Banco Mundial e a Organização Mundial da Saúde, quanto à realização dos estudos de impacto (CAIRNCROSS, 1989).

Contudo, persistem ainda, por parte de alguns autores, dúvidas quanto ao desenvolvimento dos estudos. Nesse sentido, CAIRNCROSS (1989) recomendou à Comissão de Pesquisa em Saúde para o Desenvolvimento - um organismo internacional independente - que endossasse a realização de estudos de impacto de intervenções em abastecimento de água e em esgotamento sanitário sobre a saúde. O mesmo CAIRNCROSS (1991), entretanto, após revisar estudos de caso, postulou que:

"Estudos de impacto sobre a saúde não são uma ferramenta operacional para a avaliação de projetos, ou intervenções para 'sintonia final', no setor de abastecimento de água e esgotamento sanitário. Os resultados são imprevisíveis e algumas vezes surpreendentes, na medida em que não oferecem uma interpretação firme... Porém, não obstante sua imprevisibilidade, tomados em conjunto, fornecem uma firme evidência que o abastecimento de água, a disposição de excretas e a educação sanitária podem ter um impacto significativo nas doenças diarreicas."

Diversos estudos foram desenvolvidos, para situações distintas, antes e após cada um dos marcos metodológicos descritos. Objetivando posicionar um panorama sintético e compreensivo dos mais recentes estudos epidemiológicos disponíveis na literatura, a TAB. 9 apresenta uma caracterização dos estudos consultados. Essa revisão inclui 79 trabalhos, que correspondem a um universo onde pretendeu-se consultar todos os principais artigos publicados a partir de 1985.

Adicionalmente aos artigos diretamente consultados, encontram-se publicados trabalhos de revisão, onde localizam-se referências a diversos outros estudos de caso (SAUNDERS & WARFORD, 1983; BLUM & FEACHEM, 1983; FEACHEM, 1984; McJUNKIN, 1986; ESREY & HABIcht, 1986; BRISCOE et al., 1986; LINDSKOG et al., 1987; PROST & NÉGREL, 1989; ESREY et al., 1990). A compilação das informações disponíveis nesses nove artigos de revisão, que cobrem trabalhos publicados entre 1929 e 1989, conduziu à identificação de 159 estudos de caso.
adicionais, totalizando 238 estudos diretamente consultados ou referidos, sobre a avaliação da associação entre condições de saneamento e de saúde.

Nas FIG. 10 a 15, 20 e 21 é apresentada uma distribuição de frequências das diversas características dos 238 estudos. Deve-se salientar que o levantamento das diversas características, algumas vezes conta com um grau de imprecisão e de incerteza, em vista da forma como as informações estão disponíveis. Uma dessas falhas reside na possibilidade de uma mesma pesquisa ser publicada mais de uma vez, o que nem sempre é possível se identificar. Entretanto, a caracterização apresentada permite uma visão geral dos estudos epidemiológicos já desenvolvidos no campo do saneamento.

A distribuição geográfica e temporal dos estudos é apresentada nas FIG. 10, 11 e 12. Podemos observar: o predomínio de estudos nos Continentes asiático e africano; a tendência crescente, ao longo das décadas, de incremento do número de estudos; e uma possível tendência de elevação dos estudos na América do Sul.

FIGURA 10
DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO A DÉCADA DE PUBLICAÇÃO
FIGURA 11
DISTRIBUIÇÃO POR CONTINENTE DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE

FIGURA 12
DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, POR CONTINENTE E POR DÉCADA DE PUBLICAÇÃO
As FIG. 13 e 14 exibem a distribuição dos estudos, respectivamente, segundo a variável de saneamento avaliada e segundo seu resultado. Pode-se verificar um predomínio de estudos que visam à avaliar medidas e programas de abastecimento de água, em primeiro lugar, e de esgotamento sanitário, em segundo, enquanto outras variáveis ainda são pouco contempladas. Por outro lado, a maior incidência de resultados positivos registrada pode carregar o vício resultante da hesitação, por parte de alguns pesquisadores, em publicar trabalhos onde a hipótese formulada não se vê confirmada.

FIGURA 13

DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO A VARIÁVEL DE SANEAMENTO AVALIADA

FIGURA 14

DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O RESULTADO OBTIDO
TABELA 9
SÍNTESE DESCritIVA DOS ESTUDOS DE CASo SOBRE A ASSOCiação ENTRE SANEAMENTO E SAÚDE

<table>
<thead>
<tr>
<th>REFERÊNCIA</th>
<th>MÉTODO EPIDEM.</th>
<th>VARIÁVEL SAÚDE</th>
<th>VARIÁVEL SANEAMENTO</th>
<th>RESULTADO</th>
<th>PAIS (CONTINENTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAM et al. (1989)</td>
<td>QEX</td>
<td>DIA</td>
<td>HIG</td>
<td>POS</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>AYÇAGUER & MACHO (1990)</td>
<td>ECO</td>
<td>MIN</td>
<td>AAG</td>
<td>POS</td>
<td>(AMÉRICA)</td>
</tr>
<tr>
<td>AZIZ et al. (1990a)</td>
<td>PRO</td>
<td>DIA</td>
<td>AAG, ESG, HIG</td>
<td>POS</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>AZIZ et al. (1990b)</td>
<td>QEX</td>
<td>DIA/IAN/PAR</td>
<td>AAG/ESG/HIG</td>
<td>POS</td>
<td>(AMÉRICA)</td>
</tr>
<tr>
<td>BALTAZAR & SOLOM (1989)</td>
<td>CCO</td>
<td>DIA</td>
<td>DFZ</td>
<td>POS(N.S.)</td>
<td>FILIPINAS</td>
</tr>
<tr>
<td>BALTAZAR et al. (1988)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG / ESG</td>
<td>NEG / POS(N.S.)</td>
<td>FILIPINAS</td>
</tr>
<tr>
<td>BALTAZAR et al. (1993)</td>
<td>CCO</td>
<td>DIA</td>
<td>HIG</td>
<td>POS</td>
<td>FILIPINAS</td>
</tr>
<tr>
<td>BARCELLOS & MACHADO (1991)</td>
<td>ECO</td>
<td>gastroenterite e hepatite infecciosa</td>
<td>AAG/AAG-QUAL/ESG</td>
<td>POS</td>
<td>(gastro x AAG; gastro x ESG, hepat. x AAG-QUAL)</td>
</tr>
<tr>
<td>BARTLETT et al. (1992)</td>
<td>PRO</td>
<td>DIA (persistente)</td>
<td>HIG</td>
<td>POS</td>
<td>GUATEMALA</td>
</tr>
<tr>
<td>BATEMAN & SMITH (1991)</td>
<td>ECO</td>
<td>IAN</td>
<td>AAG/ESG</td>
<td>POS</td>
<td>GUATEMALA</td>
</tr>
<tr>
<td>BERSH & OSORIO (1985)</td>
<td>ECO</td>
<td>DIA</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>COLÔMBIA</td>
</tr>
<tr>
<td>BIRKHEAD & VOGT (1989)</td>
<td>SEC</td>
<td>GIAR</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>EUA</td>
</tr>
<tr>
<td>BLAKE et al. (1993)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG-QUAL, HIG</td>
<td>POS</td>
<td>BRASIL</td>
</tr>
<tr>
<td>BRÜSSOW et al. (1993)</td>
<td>SEC</td>
<td>DIA</td>
<td>variáveis antropométricas, nutricionais e sanitárias</td>
<td>POS</td>
<td>(AAG-QUAL; ESG; LIXO)</td>
</tr>
<tr>
<td>BUTZ et al. (1984)</td>
<td>PRO</td>
<td>MIN</td>
<td>AAG/ESG</td>
<td>POS</td>
<td>MALÁSIA</td>
</tr>
<tr>
<td>CAIRNCROSS & CLIFF (1987)</td>
<td>SEC</td>
<td>QFT</td>
<td>AAG-QUANT</td>
<td>POS</td>
<td>MOÇAMBIQUE</td>
</tr>
<tr>
<td>CARVALHO et al. (1990)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG-QUAL</td>
<td>NEG</td>
<td>BRASIL</td>
</tr>
<tr>
<td>CHAMBERS et al. (1989)</td>
<td>SEC</td>
<td>infecções entéricas</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>CANADÁ</td>
</tr>
<tr>
<td>CHUTE et al. (1987)</td>
<td>CCO</td>
<td>GIAR</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>EUA</td>
</tr>
<tr>
<td>CLEMENS & STANTON (1987)</td>
<td>CCO</td>
<td>DIA</td>
<td>HIG / líxo + ESG + HIG</td>
<td>POS / NEG</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>COURBOT et al. (1990)</td>
<td>PRO</td>
<td>infecção p/Campilobacter</td>
<td>AAG</td>
<td>POS</td>
<td>Repúb. Centro-Africana</td>
</tr>
<tr>
<td>COUSENS et al. (1990)</td>
<td>SEC</td>
<td>IAN</td>
<td>AAG/ESG/HIG</td>
<td>POS</td>
<td>SRI-LANKA</td>
</tr>
<tr>
<td>DANIELS et al. (1990a)</td>
<td>CCO</td>
<td>DIA</td>
<td>ESG</td>
<td>POS</td>
<td>LESOTO</td>
</tr>
<tr>
<td>DANIELS et al. (1990b)</td>
<td>SEC</td>
<td>IAN</td>
<td>ESG</td>
<td>POS</td>
<td>LESOTO</td>
</tr>
<tr>
<td>EKANEM et al. (1991)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG</td>
<td>POS</td>
<td>NIGÉRIA</td>
</tr>
<tr>
<td>ESREY et al. (1988)</td>
<td>PRO</td>
<td>IAN</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>LESOTO</td>
</tr>
<tr>
<td>ESREY et al. (1989)</td>
<td>CCO</td>
<td>GIAR</td>
<td>AAG-QUANT/AAG-QUAL/ESG</td>
<td>POS / NEG / NEG</td>
<td>LESOTO</td>
</tr>
<tr>
<td>ESREY et al. (1992)</td>
<td>PRO</td>
<td>IAN</td>
<td>AAG/ESG</td>
<td>POS</td>
<td>LESOTO</td>
</tr>
<tr>
<td>REFERÊNCIA</td>
<td>MÉTODO EPIDEM.</td>
<td>VARIÁVEL SAÚDE</td>
<td>VARIÁVEL SANEAMENTO</td>
<td>RESULTADO</td>
<td>PAÍS (CONTINENTE)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>FEACHEM et al. (1983b)</td>
<td>SEC</td>
<td>PAR</td>
<td>AAG/ESG</td>
<td>POS (Ascaris/Zâmbia)</td>
<td>Botsuana, Gana, Zâmbia</td>
</tr>
<tr>
<td>FERLEY et al. (1986)</td>
<td>PRO</td>
<td>doenças gastro-intestinais</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>FRANÇA</td>
</tr>
<tr>
<td>FIGUEROA et al. (1985)</td>
<td>SEC</td>
<td>PAR</td>
<td>AAG/ESG/LIXO</td>
<td>POS(helm.xESG)/NEG(prtoz., helm.xAAG, lixo)</td>
<td>CHILE</td>
</tr>
<tr>
<td>FRASER & COCKE (1991)</td>
<td>SEC/CCO</td>
<td>GIAR</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>NOVA ZELÂNDIA</td>
</tr>
<tr>
<td>GARRIDO et al. (1990)</td>
<td>CCO</td>
<td>MIN</td>
<td>ESG</td>
<td>POS</td>
<td>MÉXICO</td>
</tr>
<tr>
<td>GORTER et al. (1991)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG-QUANT/AAG-QUAL/ESG</td>
<td>POS / NEG / NEG</td>
<td>NICARÁGUA</td>
</tr>
<tr>
<td>GREENLAND et al. (1981)</td>
<td>ECO</td>
<td>Estado doente em geral</td>
<td>AAG/ESG</td>
<td>NEG</td>
<td>COLÔMBIA</td>
</tr>
<tr>
<td>GROSS et al. (1989)</td>
<td>SEC</td>
<td>DIA/PAR</td>
<td>AAG/ESG</td>
<td>POS/NEG</td>
<td>BRASIL</td>
</tr>
<tr>
<td>GUERRANT et al. (1983)</td>
<td>PRO</td>
<td>DIA</td>
<td>AAG/ESG</td>
<td>POS</td>
<td>BRASIL</td>
</tr>
<tr>
<td>HAN & MOE (1990)</td>
<td>PRO</td>
<td>DIA</td>
<td>contaminação fecal da moradia</td>
<td>POS</td>
<td>MYANMA</td>
</tr>
<tr>
<td>HASAN et al. (1989)</td>
<td>SEC</td>
<td>IAN</td>
<td>AAG/ESG</td>
<td>NEG</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>HEBERT (1985a)</td>
<td>PRO</td>
<td>IAN</td>
<td>ESG/HIG</td>
<td>POS: 18-36m(HIG), 36m(ESG)</td>
<td>ÍNDIA</td>
</tr>
<tr>
<td>HEBERT (1985b)</td>
<td>PRO</td>
<td>IAN</td>
<td>AAG</td>
<td>POS; <3a(AAG-QUAL); >3a(AAG-QUANT)</td>
<td>ÍNDIA</td>
</tr>
<tr>
<td>HENRY & RAHIM (1990)</td>
<td>PRO</td>
<td>DIA</td>
<td>AAG/ESG</td>
<td>POS(AAG+ESG,AAG-QUANT)/NEG(AAG-QUAL)</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>HENRY et al. (1990)</td>
<td>PRO</td>
<td>DIA</td>
<td>contaminação da água e de alimentos</td>
<td>NEG</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>HUTTLY et al. (1990)</td>
<td>SEC/PRO</td>
<td>DIA/dracunculíase/IAN</td>
<td>AAG/ESG</td>
<td>POS(excto dracunc.-SEC)</td>
<td>NIGÉRIA</td>
</tr>
<tr>
<td>ITTIRAVIVONGS et al. (1992)</td>
<td>SEC</td>
<td>bactérias e parasitas nas fezes</td>
<td>score qualitativo de 7 grupos de cuidados sanit.</td>
<td>POS</td>
<td>TAILÂNDIA</td>
</tr>
<tr>
<td>KING et al. (1989)</td>
<td>SEC</td>
<td>epidemia de febre tifóide</td>
<td>variáveis sociais e sanitárias</td>
<td>POS (AAG)</td>
<td>FORMOSA</td>
</tr>
<tr>
<td>LABORDE et al. (1993)</td>
<td>PRO</td>
<td>DIA</td>
<td>contaminação fecal máos, tomenza e países (centros saúde)</td>
<td>POS</td>
<td>EUA</td>
</tr>
<tr>
<td>LAPHAM et al. (1987)</td>
<td>PRO</td>
<td>GIAR</td>
<td>AAG-QUAL</td>
<td>NEG</td>
<td>EUA</td>
</tr>
<tr>
<td>LINDSKOG et al. (1987a)</td>
<td>PRO</td>
<td>IAN</td>
<td>AAG</td>
<td>NEG</td>
<td>MALAUÍ</td>
</tr>
<tr>
<td>LINDSKOG et al. (1988)</td>
<td>PRO</td>
<td>MIN</td>
<td>AAG/IAN</td>
<td>POS(IAN / POS(N.S.):AAG</td>
<td>MALAUÍ</td>
</tr>
<tr>
<td>LONERGAN & VANSICKLE (1991)</td>
<td>SEC</td>
<td>DIA</td>
<td>variáveis sócio-econômicas e sanitárias</td>
<td>POS(AAG-QUAL:ESG, fonte água:HIG, LIXO)/NEG(talta água)</td>
<td>MALÁSIA</td>
</tr>
<tr>
<td>MAGNANI et al. (1993)</td>
<td>SEC</td>
<td>IAN</td>
<td>AAG/ESG</td>
<td>POS (1º ano de vida)</td>
<td>FILIPINAS</td>
</tr>
<tr>
<td>REFERÊNCIA</td>
<td>MÉTODO EPIDEM.</td>
<td>VARIÁVEL SAÚDE</td>
<td>VARIÁVEL SANEAMENTO</td>
<td>RESULTADO</td>
<td>PAÍS (CONTINENTE)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>MANUN'EO et al. (1994)</td>
<td>PRO</td>
<td>DIA</td>
<td>variáveis demográficas, socio-econômicas e sanitárias</td>
<td>POS (AAG-QUAL; ESG)</td>
<td>ZAIRE</td>
</tr>
<tr>
<td>MASON et al. (1986)</td>
<td>SEC</td>
<td>PAR</td>
<td>AAG</td>
<td>POS (helm.)/ NEG (protoz.)</td>
<td>ZIMBABUE</td>
</tr>
<tr>
<td>MATHIAS et al. (1992)</td>
<td>CCO</td>
<td>GIAR</td>
<td>AAG</td>
<td>NEG</td>
<td>CANADÁ</td>
</tr>
<tr>
<td>MENORCICK et al. (1990)</td>
<td>CCO</td>
<td>DIA por rotavirus</td>
<td>AAG-QUANT/ESG/índice saneamento ambiental</td>
<td>NEG/POS/POS</td>
<td>EUA (população apáche)</td>
</tr>
<tr>
<td>MERRICK (1985)</td>
<td>ECO</td>
<td>MIN</td>
<td>AAG</td>
<td>POS</td>
<td>BRASIL</td>
</tr>
<tr>
<td>MERTENS et al. (1990b)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG</td>
<td>POS</td>
<td>SRI-LANKA</td>
</tr>
<tr>
<td>MERTENS et al. (1992)</td>
<td>CCO</td>
<td>DIA</td>
<td>ESG</td>
<td>POS</td>
<td>SRI-LANKA</td>
</tr>
<tr>
<td>MOREN et al. (1991)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG</td>
<td>POS</td>
<td>MALAUÍ</td>
</tr>
<tr>
<td>ONI et al. (1991)</td>
<td>PRO</td>
<td>DIA</td>
<td>exist. cozinha independ.</td>
<td>POS</td>
<td>NIGERIA</td>
</tr>
<tr>
<td>PARSONNET et al. (1989)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>EUA</td>
</tr>
<tr>
<td>PERINI (1988)</td>
<td>QEX</td>
<td>mortalidade por causas</td>
<td>AAG</td>
<td>NEG</td>
<td>BRASIL</td>
</tr>
<tr>
<td>PINFOLD (1990)</td>
<td>QEX</td>
<td>contamin. água/limeze</td>
<td>EDSAN</td>
<td>POS</td>
<td>TAILÂNDIA</td>
</tr>
<tr>
<td>RINCÓN et al. (1989)</td>
<td>SEC</td>
<td>PAR</td>
<td>HIG / saneamento</td>
<td>POS (protozoário x HIG)</td>
<td>CUBA</td>
</tr>
<tr>
<td>RYDER et al. (1985)</td>
<td>PRO</td>
<td>DIA/DERM</td>
<td>AAG</td>
<td>NEG / POS</td>
<td>PANAMÁ</td>
</tr>
<tr>
<td>STANTON & CLEMENS (1987)</td>
<td>QEX</td>
<td>DIA</td>
<td>EDSAN</td>
<td>POS</td>
<td>BANGLADESH</td>
</tr>
<tr>
<td>U et al. (1992)</td>
<td>CCO</td>
<td>DIA</td>
<td>variáveis sócio-econômicas e sanitárias</td>
<td>POS</td>
<td>MYANMAR</td>
</tr>
<tr>
<td>VANZO (1988)</td>
<td>ECO</td>
<td>MIN</td>
<td>AAG/ESG</td>
<td>POS</td>
<td>MALÁSIA</td>
</tr>
<tr>
<td>VATHANOPHAS et al. (1988)</td>
<td>SEC</td>
<td>DIA</td>
<td>AAG-QUAL/HIG/mosquitos</td>
<td>NEG / POS / NEG</td>
<td>TAILÂNDIA</td>
</tr>
<tr>
<td>VERWEIJ et al. (1991)</td>
<td>SEC</td>
<td>DIA</td>
<td>AAG</td>
<td>NEG</td>
<td>ÁFRICA DO SUL</td>
</tr>
<tr>
<td>VICTORI et al. (1988)</td>
<td>CCO</td>
<td>MIN causada por diarréia</td>
<td>AAG-QUANT/AAG-QUAL/ESG</td>
<td>POS / NEG / NEG</td>
<td>BRASIL</td>
</tr>
<tr>
<td>WAXLER et al. (1985)</td>
<td>SEC</td>
<td>MIN</td>
<td>variáveis sócio-econômicas e sanitárias</td>
<td>POS (posse de latrina: o mais significativo)</td>
<td>SRI-LANKA</td>
</tr>
<tr>
<td>WEST et al. (1989)</td>
<td>SEC</td>
<td>OFT (tracoma)</td>
<td>AAG</td>
<td>POS(distância)/NEG (presença:AAG-QUANT)</td>
<td>TANZÂNIA</td>
</tr>
<tr>
<td>WRIGHT et al. (1991)</td>
<td>SEC</td>
<td>DIA</td>
<td>fonte água/dist. água/ESG/HIG</td>
<td>POS/NEG/POS/POS</td>
<td>EGIOTO</td>
</tr>
<tr>
<td>YOUNG & BRISCOE (1987)</td>
<td>CCO</td>
<td>DIA</td>
<td>AAG+ESG</td>
<td>POS (N.S.)</td>
<td>MALAUÍ</td>
</tr>
</tbody>
</table>
TABELA 9 (continuação)
SÍNTESE DESCRIPTIVA DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE

<table>
<thead>
<tr>
<th>REFERÊNCIA</th>
<th>MÉTODO EPIDEM.</th>
<th>VARIÁVEL SAÚDE</th>
<th>VARIÁVEL SANEAMENTO</th>
<th>RESULTADO</th>
<th>PAÍS (CONTINENTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZENG-SUI et al. (1989)</td>
<td>SEC</td>
<td>disenteria bacilar; hepatite A; cólera e Dia</td>
<td>AAG</td>
<td>NEG/POS/POS/POS (segundo variável saúde)</td>
<td>CHINA</td>
</tr>
<tr>
<td>ZMIROU et al. (1987)</td>
<td>PRO</td>
<td>doenças gastro-intestinais</td>
<td>AAG-QUAL</td>
<td>POS</td>
<td>FRANÇA</td>
</tr>
<tr>
<td>ZUMRAWI & DIMOND (1988)</td>
<td>PRO</td>
<td>IAN</td>
<td>AAG/ESG</td>
<td>POS</td>
<td>SUDÃO</td>
</tr>
</tbody>
</table>

CONVENÇÕES:

1. CCO: estudo caso-controle
 - ECO: estudo de correlação ecológica
 - QEX: estudo quase-experimental
2. DERM: doenças dermatológicas
 - DIA: diarreia
 - GIAR: giardiase
 - MIN: mortalidade infantil
 - PAR: parasitas nas fezes
3. AAG: abastecimento de água
 - AAG-QUAL: qualidade da água
 - AAG-QUANT: quantidade de água consumida
 - EDSAN: educação sanitária
 - HIG: hábitos higiénicos
4. NEG: associação negativa
 - N.S.: resultado estatisticamente não significativo
 - POS: associação positiva
2.4- INDICADORES DE SAÚDE

2.4.1- VARIÁVEIS APLICÁVEIS A ESTUDOS DE IMPACTO DE INTERVENÇÕES EM SANEAMENTO

A escolha de uma variável ou de um indicador, que reflita o estado de saúde de um grupo populacional, deve conciliar o compromisso entre a necessidade de efetivamente expressar a condição de saúde coletiva, por um lado, e a sua adequabilidade à pesquisa em questão, através de sua validade, de sua confiabilidade e de sua habilidade de representar o efeito da exposição, por outro.

Com relação ao primeiro aspecto, FREIJ & WALL (1977) julgam que o conceito de saúde constitui uma abstração, podendo ser visualizado como um conjunto de componentes, de natureza biológica, fisiológica, social e outras, cada qual com sua dimensão "saúde-doença". Citando SULLIVAN (1966), defendem haver pouca justificativa para a hipótese de que um continuum unidimensional esteja subjacente e relacione todos os indicadores de condições de saúde, em diferentes contextos. Particularmente quanto à saúde infantil, lembram a necessidade de abordá-la como um fenômeno ecológico, em um sistema complexo de fatores de caráter médico e sócio-ambiental inter-relacionados.

Quanto ao ângulo da adequabilidade do indicador de saúde ao objetivo específico da pesquisa, uma avaliação de impacto de intervenções em saneamento pode empregar uma variedade de indicadores. Nos estudos de caso levantados, a seguinte distribuição dos indicadores foi observada:
FIGURA 15
DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O INDICADOR DE SAÚDE

Note-se a maior frequência da adoção da morbidade por enfermidades diarréicas, a qual é referendada em trabalhos que estabelecem roteiros metodológicos para os estudos de impacto de saneamento. Alegam-se sua importância sobre a saúde pública; a validade e a confiabilidade dos instrumentos empregados na sua determinação; a sua capacidade de resposta a alterações nas condições de saneamento e o custo e exequibilidade demonstrados na sua determinação (BRISCOE et al., 1986).

Na presente revisão, optou-se por descrever apenas aquela variável, por ter sido a adotada na pesquisa, o que não pretende configurar uma desqualificação das demais, quanto ao seu emprego como indicadores de saúde em estudos epidemiológico na área de saneamento.

2.4.2- MORBIDADE POR ENFERMIDADES DIARRÉICAS

2.4.2.1- DEFINIÇÃO

Diarréia é usualmente definida como a passagem de três ou mais movimentos intestinais líquidos - assumindo a forma do recipiente - em 24 horas. Um episódio de diarréia, por outro lado, é convencionalmente definido como aquele que se inicia no
primeiro período de 24 horas, no qual se verifica a definição de diarreia, e termina no último dia anterior a pelo menos dois dias consecutivos, em que não ocorre o evento da definição (LIMA & GUERRANT, 1992).

Segundo FINE et al. (1989), citados por PHILIPP et al. (1993), diarreia está presente quando uma ou mais das seguintes ocorrências estejam presentes: (1) acréscimo anormal no peso diário das fezes; (2) acréscimo anormal na liquefação das fezes; (3) acréscimo anormal na frequência de evacuação. Muitas vezes, é acompanhado pela urgência, desconforto anal ou incontinência, ou ainda uma combinação dos três. PHILIPP et al. (1993), testando as percepções e reações da população a essa definição, em indivíduos entre 16 e 70 anos residentes na Inglaterra, concluíram que há uma ampla variação quanto à percepção individual da diarreia. Mais da metade dos 400 entrevistados consideram que um único episódio de fezes amolecidas caracteriza diarreia. Quase um terço dos entrevistados define como diarreia um acréscimo na frequência de evacuação.

É importante salientar que diarreia constitui o sintoma de diversas diferentes etiologias, cada qual com seus respectivos fatores de risco. Entretanto, o estudo das enfermidades diarréicas e seus determinantes tem sido habitual, dado ao seu significado em termos de saúde pública e a possibilidade do desenvolvimento de estratégias comuns de controle para a diarreia, independente da etiologia.

2.4.2.2- IMPORTÂNCIA NO ÂMBITO DA SAÚDE PÚBLICA

Doenças diarréicas são a causa principal de morbidade na maioria dos países em desenvolvimento (BRISCOE et al., 1986). Em 1976, de 24 países da América Latina, em cinco deles (21%) as enfermidades diarréicas constituíam a primeira causa de morte, em dez (42%) a segunda e em três (13%) a terceira (MATA, 1987). Mesmo nos países desenvolvidos, a morbidade e a mortalidade por essas enfermidades ainda constituem importantes problemas de saúde pública, permanecendo os mesmos fatores de risco básicos quanto à sua transmissão (SAVARINO & BOURGEIOS, 1993).

Em uma compilação clássica, SNYDER & MERSON (1982) estimaram que, no início da década de 80, a morbidade por doenças diarréicas em crianças menores de cinco anos equivalia anualmente a 744 milhões a um bilhão de episódios, correspondendo
a uma incidência de 2,2 episódios/criança.ano, na África, Ásia (excluindo a China) e América Latina. Esse estudo foi atualizado dez anos após (BERN et al., 1992), conduzindo a uma incidência média de 2,6 episódios de diarreia por criança.ano.

Quanto à mortalidade, o estudo de SNYDER & MERSON (1982) estimou cinco milhões de óbitos anuais por doenças diarreicas, decorrentes de uma taxa média de 13,6 mortes/1000 crianças < 5 anos . ano. O trabalho de BERN et al. (1992), por outro lado, encontrou valor inferior para a mortalidade - 3,3 milhões de morte (1,5 - 5,1 milhões) -, com uma taxa de 19,6 mortes/1000 crianças.ano e de 4,6 mortes/1000 crianças.ano, respectivamente para crianças menores de 1 ano e entre 1 e 4 anos.

Em levantamento realizado em Belo Horizonte, RODRIGUES et al. (1993) encontraram os seguintes valores para doença diarréica aguda, segundo notificação na rede hospitalar pública e privada, entre julho/1991 e julho/1992:

TABELA 10
MORBIDADE E MORTALIDADE POR DIARRÉIA AGUDA EM

<table>
<thead>
<tr>
<th>FAIXA ETÁRIA</th>
<th>INCIDÊNCIA (episódio/ criança.ano)</th>
<th>MORTALIDADE (óbito/1000 crianças.ano)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 ano</td>
<td>0,107</td>
<td>2,042</td>
</tr>
<tr>
<td>1 - 4 anos</td>
<td>0,046</td>
<td>0,038</td>
</tr>
<tr>
<td>até 4 anos</td>
<td>0,059</td>
<td>0,462</td>
</tr>
</tbody>
</table>

FONTE: RODRIGUES et al. (1993)

Saliente-se que os valores obtidos para Belo Horizonte, pela distinta metodologia de obtenção, não são comparáveis com as estimativas mundiais anteriormente apresentadas. O trabalho de RODRIGUES et al. (1993) baseia-se em notificações de morbidade e em declarações de óbito, enquanto que as demais estimativas são provenientes da compilação de estudos longitudinais em comunidades, nos quais o registro de morbidade e de mortalidade são obtidos através de visitas domiciliares, com frequência mínima quinzenal para morbidade e mensal para mortalidade.
2.4.2.3- ETIOLOGIA

Pesquisas sobre a etiologia da diarreia passaram a apresentar respostas mais abrangentes, em concomitância com o desenvolvimento de técnicas analíticas para a determinação dos diversos patogênicos nas fezes. Enquanto que na década de 70 a diarreia era considerada uma "síndrome impenetrável" (BRISCOE et al., 1986), atualmente já há um conhecimento acumulado a respeito do problema, capaz de elucidar os agentes etiológicos envolvidos em sua transmissão.

Na TAB. 11, são apresentadas nove importantes investigações sobre a presença de patogênicos em fezes de portadores de diarreia e a tabela seguinte mostra os organismos mais frequentes, segundo aquelas investigações. Deve-se considerar, na TAB. 12, a diversidade de situações pesquisadas, com diferentes locais, faixa etária, persistência da diarreia, metodologia de obtenção da amostra e outros fatores.
TABELA 11
PERCENTUAL DE OCORRÊNCIA DE MICRORGANISMOS NAS FEZES DE PORTADORES DE DIARRÉIAS, SEGUNDO NOVE DIFERENTES ESTUDOS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pais</td>
<td>Bangladesh</td>
<td>Peru</td>
<td>África do Sul</td>
<td>Multicêntrico</td>
<td>Quênia</td>
<td>Bangladesh</td>
<td>Brasil</td>
<td>Guiné-Bissau</td>
<td>Nigéria</td>
</tr>
<tr>
<td>Faixa etária</td>
<td>até 9 anos</td>
<td>até 1 ano</td>
<td>até 6 anos</td>
<td>até 3 anos</td>
<td>até 5 anos</td>
<td>até 6 anos</td>
<td>até 3 anos</td>
<td>até 4 anos</td>
<td>até 5 anos</td>
</tr>
<tr>
<td>Tamanho da amostra</td>
<td>9320</td>
<td>153</td>
<td>373</td>
<td>3640</td>
<td>200</td>
<td>363 crianças (5)</td>
<td>406</td>
<td>1219</td>
<td>215</td>
</tr>
<tr>
<td>Microrganismo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rotavirus</td>
<td>34</td>
<td>2,5*</td>
<td>15,4*</td>
<td>16</td>
<td>7,5</td>
<td>3,9</td>
<td>11,6</td>
<td>2,8*</td>
<td>22,3</td>
</tr>
<tr>
<td>- ECET(1)</td>
<td>24</td>
<td>7,4</td>
<td>1,6</td>
<td>16</td>
<td>2,5</td>
<td>8,8</td>
<td>21,2</td>
<td>12,4</td>
<td>14,4</td>
</tr>
<tr>
<td>- ECEP(2)</td>
<td>S.R. (3)</td>
<td>6,1*</td>
<td>8,8*</td>
<td>9</td>
<td>17,9</td>
<td>S.R.</td>
<td>16,5</td>
<td>3,8*</td>
<td>10,7</td>
</tr>
<tr>
<td>- Shigella</td>
<td>6</td>
<td>2,0*</td>
<td>3,8</td>
<td>11</td>
<td>1,4</td>
<td>9,7</td>
<td>0,5</td>
<td>1,5</td>
<td>5,1</td>
</tr>
<tr>
<td>- Campylobacter jejuni</td>
<td>S.R.</td>
<td>10,1</td>
<td>3,5*</td>
<td>11</td>
<td>6,3</td>
<td>1,0</td>
<td>9,9</td>
<td>S.R.</td>
<td>S.R.</td>
</tr>
<tr>
<td>- Salmonella</td>
<td><1</td>
<td>0,8</td>
<td>1,9</td>
<td>3</td>
<td>0,6</td>
<td>0,4</td>
<td>1,5</td>
<td>2,6</td>
<td>3,3</td>
</tr>
<tr>
<td>- Giardia lamblia</td>
<td><4</td>
<td>0,7</td>
<td>6,4</td>
<td>3</td>
<td>19,8</td>
<td>9,9</td>
<td>S.R.</td>
<td>19,1</td>
<td>0,5</td>
</tr>
<tr>
<td>- Vibrio cholerae</td>
<td>12</td>
<td>0,1</td>
<td>0,3</td>
<td>1</td>
<td>S.R.</td>
<td>0,1</td>
<td>S.R.</td>
<td>0,6</td>
<td>S.R.</td>
</tr>
<tr>
<td>- Entamoeba histolytica</td>
<td>5</td>
<td>S.R.</td>
<td>0,3</td>
<td>0,3</td>
<td>5,2</td>
<td>0,7</td>
<td>S.R.</td>
<td>4,1</td>
<td>0,5</td>
</tr>
<tr>
<td>- Cryptosporidium</td>
<td>S.R.</td>
<td>S.R.</td>
<td>2,5</td>
<td>S.R.</td>
<td>1,3</td>
<td>S.R.</td>
<td>S.R.</td>
<td>5,7*</td>
<td>S.R.</td>
</tr>
<tr>
<td>- Outros</td>
<td>>8</td>
<td>0,6</td>
<td>S.R.</td>
<td>S.R.</td>
<td>2,0</td>
<td>8,8</td>
<td>S.R.</td>
<td>13,8</td>
<td>14,4(6)</td>
</tr>
<tr>
<td>- Negativo</td>
<td>S.R.</td>
<td>58,7</td>
<td>S.R.</td>
<td>19-41</td>
<td>S.R.</td>
<td>S.R.</td>
<td>S.R.</td>
<td>50,0</td>
<td>S.R.</td>
</tr>
</tbody>
</table>

(1) ECET: *Escherichia coli* enterotoxigênica.
(2) ECEP: *Escherichia coli* enteropatogênica.
(3) S.R.: sem registro.
(4) Estudo multicêntrico envolvendo China, Índia, México, Myanmar e Paquistão.
(5) Incluídos apenas episódios de diarréia c/ duração inferior a 14 dias.
(6) Outros grupos de *Escherichia coli*.
* Proporção superior à de grupo controle, em nível estatisticamente significativo.
<table>
<thead>
<tr>
<th>MICRORGANISMO</th>
<th>NÚMERO DE VEZES EM QUE APARECE NA COLOCAÇÃO:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1ª</td>
</tr>
<tr>
<td>Rotavírus</td>
<td>4(2)</td>
</tr>
<tr>
<td>ECET(4)</td>
<td>2(2)</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>3</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>1</td>
</tr>
<tr>
<td>ECEP(5)</td>
<td>-</td>
</tr>
<tr>
<td>Shigella</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) S.R.: sem registro.
(2) mesma frequência na 2ª colocação.
(3) mesma frequência na 3ª colocação.
(4) ECET: Escherichia coli enterotoxigênica.
(5) ECEP: Escherichia coli enteropatogênica.

É importante destacar que a presença em maior ou menor frequência do organismo nas fezes não permite associá-lo diretamente como agente etiológico, já que são encontrados também em fezes de indivíduos sem diarreia, como demonstram vários estudos que empregam grupo controle.

Em estudos como o de MOLBAK et al. (1994), onde foi procedida uma comparação entre a presença de microrganismos em fezes de 1219 episódios de diarreia e de 511 controles assintomáticos, é possível se inferir quanto a agentes etiológicos. Naquela pesquisa, apenas rotavírus, Escherichia coli enteropatogênica, espécies de Cryptosporidium e Strongyloides stercoralis mostraram frequências estaticasticamente superiores, a um nível de significância de 5%, nos casos com relação aos controles.

Similaramente, rotavírus, Escherichia coli enteropatogênica e Shigella, no estudo de BLACK et al. (1989), e rotavírus, Escherichia coli enteropatogênica e Campylobacter
jejuni, no estudo de LOENING et al. (1989), mostraram-se significativamente superiores em casos de diarréia, comparados com controles.

Um outro fator relevante a ser avaliado é o diferencial da distribuição dos organismos por idade, conforme ilustrado na TAB. 13. Verifica-se que a tese de maior frequência de rotavírus nas fezes de crianças de menor faixa etária (GRACEY, 1987) não é confirmada em todos os estudos, embora isso se manifeste nas investigações de BLACK et al. (1980), de HUIJLAN et al. (1991), que corresponde a um grande estudo multicêntrico, e, de certa forma, de LOENING et al. (1989) e de MOLBAK et al. (1994).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 2 anos</td>
<td>2-9 anos</td>
<td>< 6 meses</td>
<td>7-12 meses</td>
<td>13-24 meses</td>
</tr>
<tr>
<td>- Rotavírus</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- ECET(1)</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>- Giardia lamblia</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>- Campylobacter jejuni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>- ECEP(2)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>- Shigella</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) ECET: *Escherichia coli* enterotoxigênica.
(2) ECEP: *Escherichia coli* enteropatógênica.
2.4.2.4- DETERMINANTES

Os determinantes da diarreia são múltiplos e configuram uma complexa cadeia causal. Diversos autores procuraram desenvolver modelos explicativos, os quais, se por um lado contribuem para consolidar o entendimento sobre a teia de mecanismos presentes, por outro apenas amplificam a multicausalidade envolvida e a decorrente dificuldade de se compreender de forma simplista a transmissão da diarreia.

FEACHEM et al. (1983c), avaliando as intervenções potenciais para o controle da morbidade por diarreia, em crianças de até cinco anos de idade, propõem o conjunto de medidas apresentado na TAB. 14.

ESREY et al. (1985), por outro lado, construíram um modelo de associação entre dose de patogênicos entéricos ingeridos e incidência de diarreia infantil, reproduzido na FIG.16. Segundo a hipótese desenvolvida, a diarreia branca e a diarreia severa apresentam comportamentos diferenciados em crianças, para cada faixa de dose de patogênicos entéricos ingerida. Conforme o esquema, a incidência de diarreia branca:

- em baixos níveis de ingestão (A-B), permanece em um patamar apreciável, devido a um mínimo irreductível de diarreia infecciosa e de diarreias não provocadas por patogênicos entéricos;
- apresenta-se crescente, à medida que aumenta a dose ingerida (B-D), através de uma relação dose-resposta ignorada (linha tracejada);
- atinge uma saturação, sendo que a partir desse nível de dose ingerida (ponto D), para um acréscimo na dose não se verifica uma elevação da incidência.

![Relação dose-resposta para diarreia](image)

FIGURA 16

RELAÇÃO DOSE-RESPPOSTA PARA DIARREIA, EM UMA COMUNIDADE EXPOSTA A PATOGÊNICOS ENTÉRICOS - MODELO ESQUEMÁTICO
<table>
<thead>
<tr>
<th>Através da ação sobre o caso</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Terapia de reidratação oral</td>
<td>1. Administração da reidratação oral na moradia.</td>
</tr>
<tr>
<td>B. Terapia de reidratação não oral</td>
<td>1. Administração da reidratação por via intravenosa ou outras</td>
</tr>
<tr>
<td></td>
<td>vias, em instituição médica.</td>
</tr>
<tr>
<td>C. Alimentação apropriada</td>
<td>1. Promoção da alimentação apropriada da criança, durante a</td>
</tr>
<tr>
<td></td>
<td>doença e a convalescência.</td>
</tr>
<tr>
<td>D. Quimioterapia</td>
<td>1. Administração de agentes terapêuticos na moradia.</td>
</tr>
<tr>
<td></td>
<td>2. Administração de agentes terapêuticos numa instituição</td>
</tr>
<tr>
<td></td>
<td>médica.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Através do aumento da resistência do hospedeiro à infecção e/ou à doença e/ou à morte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Nutrição materna</td>
<td>1. Melhoria da nutrição pré-natal para reduzir a incidência de</td>
</tr>
<tr>
<td></td>
<td>baixo peso ao nascer.</td>
</tr>
<tr>
<td></td>
<td>2. Melhoria da nutrição pré- e pós-natal para melhorar a</td>
</tr>
<tr>
<td></td>
<td>qualidade da amamentação.</td>
</tr>
<tr>
<td>B. Nutrição da criança</td>
<td>1. Promoção de amamentação exclusiva até idade de 4-6 meses</td>
</tr>
<tr>
<td></td>
<td>e amamentação parcial a partir dai.</td>
</tr>
<tr>
<td></td>
<td>2. Melhoria das práticas de desmame para crianças entre 4 e 18</td>
</tr>
<tr>
<td></td>
<td>meses.</td>
</tr>
<tr>
<td></td>
<td>3. Alimentação suplementar para a melhoria do estado nutricional</td>
</tr>
<tr>
<td></td>
<td>em crianças entre 6 e 59 meses.</td>
</tr>
<tr>
<td></td>
<td>4. Promoção do uso de gráficos de crescimento pelas mães,</td>
</tr>
<tr>
<td></td>
<td>como um auxílio para a adequada nutrição e atenção infantil.</td>
</tr>
<tr>
<td>C. Imunização</td>
<td>1. Imunização ao rotavírus e/ou à cólera (na eventual</td>
</tr>
<tr>
<td></td>
<td>disponibilidade de vacinas efetivas e testadas) da criança</td>
</tr>
<tr>
<td></td>
<td>e/ou da mãe.</td>
</tr>
<tr>
<td>D. Quimioprofilaxia</td>
<td>1. Quimioprofilaxia de crianças sob risco especial, para redução</td>
</tr>
<tr>
<td></td>
<td>da incidência e/ou severidade da doença.</td>
</tr>
</tbody>
</table>
TABELA 14 (continuação)
INTERVENÇÕES POTENCIAIS PARA A REDUÇÃO DA MORBIDADE E DA MORTALIDADE POR DIARRÉIA EM CRIANÇAS ATÉ CINCO ANOS

<table>
<thead>
<tr>
<th>Através da redução da transmissão dos agentes patogênicos</th>
<th>A. Abastecimento de água e disposição de excretas</th>
<th>1. Construção de abastecimento de água, que melhore a qualidade e a disponibilidade de água para fins domésticos e melhoria das instalações de disposição de excretas, proporcionando o necessário suporte educacional para assegurar o uso e a manutenção dessas instalações.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. Higiene pessoal e doméstica</td>
<td>1. Promoção de práticas específicas de higiene pessoal e doméstica, como lavagem das mãos, através de campanhas educacionais apropriadas.</td>
</tr>
<tr>
<td></td>
<td>C. Higiene dos alimentos</td>
<td>1. Promoção de práticas melhoradas para a preparação e o armazenamento de alimentos, tanto no comércio quanto nas moradias, enfatizando especialmente a preparação higiênica de alimentação de desmame.</td>
</tr>
<tr>
<td></td>
<td>D. Controle de vetores</td>
<td>1. Controle da infecção de animais domésticos e de fazendas por patogênicos causadores de diarréia no homem.</td>
</tr>
<tr>
<td></td>
<td>E. Controle de moscas</td>
<td>1. Controle de moscas, especialmente daqueles que procriam em associação com fezes humanas ou animais.</td>
</tr>
</tbody>
</table>

| Através do controle e/ou prevenção de epidemias de diarréia | A. Vigilância, investigação e controle de epidemias | 1. Melhoria da habilidade em identificar e investigar uma epidemia com antecedência e da capacidade de implementar atividades de controle efetivas. |

FONTE: FEACHEM et al. (1983c)
Por sua vez, a incidência da diarreia severa - definida pela taxa de evacuação, volume das fezes, duração, grau de desidratação e outras manifestações - é inferior à da diarreia branda. Porém, representa uma proporção crescente da incidência total de diarreia, conforme a ingestão de patogênicos se eleva a partir do nível C até o nível E (FIG. 16). Além disto, a incidência permanece constante na faixa A-C, eleva-se no trecho C-E e novamente mantém-se constante entre E e F.

Nota-se, na figura, uma defasagem para a direita dos pontos de inflexão C e E - correspondentes às diarreias severas -, em relação a B e D - referentes às diarreias brandas. Tal deslocamento explica-se a partir da hipótese de que, para um único patogênico, a produção de diarreia severa demanda uma maior dose ingerida que a produção de diarreia branca. Existem confirmações dessa hipótese para a *Escherichia coli* enterotoxigênica, para o *Vibrio cholerae* e para a *Salmonella*.

ESREY et al. (1985) defendem ainda que o modelo apresentado na FIG. 16 pode ser adaptado para dois outros enfoques. Primeiramente, substituindo diarreia branca por incidência total de diarreia e diarreia severa por mortalidade por diarreia. Em segundo lugar, substituindo diarreia branca por incidência de etiologias com baixa DI50 (dose infecciosa 50) e diarreia severa por incidência de etiologias com elevada DI50. Esse último modelo é consistente com o panorama apresentado pelos países desenvolvidos (faixa A-C), onde ocorre uma baixa proporção de cólera e de diarreia provocada por *Escherichia coli* enterotoxigênica - elevadas DI50 -, uma alta proporção de diarreia por rotavírus - baixa DI50 - e uma proporção intermediária de infecção por *Shigella* - DI50 média.

Visando à construção de um modelo causal abrangente, COETZER & KROUKAMP (1989) desenvolveram um diagrama explicativo, no qual interage uma tríade entre diarreia, desnutrição e infecção (FIG. 17).

Com preocupação similar, LONERGAN & VANSICKLE (1991), avaliando fatores de risco para a diarreia em Port Dickson - Malásia, propuseram um modelo, denominado de sócio-ecológico, que considera a interação, em um sistema dinâmico complexo, de diversos determinantes ambientais, sociais e comportamentais (FIG. 18).
FIGURA 17
TRIÂDE COMPOSTA PELA DIARRÉIA, DESNUTRIÇÃO E INFECÇÃO
MODELO CONCEITUAL

FONTE: adaptado de COETZER & KROUKAMP (1989)
FIGURA 18

MODELO SÓCIO-ECOLÓGICO DOS DETERMINANTES DA DIARRÉIA

FONTE: LONERGAN & VANSICKLE (1991)
2.5 - DELINEAMENTOS EPIDEMIOLÓGICOS

Na atualidade, a Epidemiologia Analítica constitui-se em uma ciência (ALMEIDA FILHO, 1991), com um corpo de princípios sistematizado e consolidado, embora tal fortalecimento metodológico tenha ocorrido sobretudo a partir das últimas três décadas (ROTHMAN, 1986). Esse desenvolvimento tem se aplicado tanto quando o objetivo do estudo é o de identificação de fatores etiológicos, quanto para a avaliação de programas ou o planejamento de ações de saúde pública.

A gênese do conhecimento científico, sistematizado sob os princípios da metodologia científica, teve como paradigma os chamados estudos experimentais, nos quais o investigador intervém nos fatores suspeitos de alterarem o fenômeno em estudo (SCHLESSELMAN, 1982). A experimentação científica foi a raiz também dos estudos epidemiológicos. Entretanto, a Epidemiologia recorre ainda aos estudos não experimentais, os quais são planejados para "simular o que seria aprendido se um experimento tivesse sido conduzido" (ROTHMAN, 1986). Tais estudos encontram hoje uma grande aplicabilidade, em vista de algumas desvantagens dos estudos experimentais, como a necessidade de uma amostra demasiadamente grande em algumas situações, sua duração, limitações éticas e outras restrições (SCHLESSELMAN, 1982).

A definição precisa das características fundamentais dos diversos métodos epidemiológicos, bem como dos princípios pelos quais estes se diferenciam entre si, estão bem desenvolvidos nos textos clássicos da Epidemiologia (MACMAHON & PUGH, 1970; LILIENFELD & LILIENFELD, 1980; KLEINBAUM et al., 1982; MAUSNER & KRAMER, 1985; KELSEY et al., 1986; ROTHMAN, 1986; LILIENFELD & STOLLEY, 1994). Na FIG. 19, apresenta-se um fluxograma explicativo, que procura estabelecer a diferenciação básica entre os diversos métodos epidemiológicos. Neste, incluiu-se o estudo ecológico, o qual não é referido em todos os textos clássicos, mas já é atualmente considerado como um método situado no mesmo patamar dos demais (MORGENSTERN, 1982; SCHWARTZ, 1994).
FIGURA 19
CARACTERIZAÇÃO DOS MÉTODOS EPIDEMIOLÓGICOS

Com relação aos estudos epidemiológicos mais especificamente relacionados à avaliação de intervenções em saneamento, tem sido recentemente recomendado, com muita ênfase, o emprego do método caso-controle (BRISCOE et al., 1985; BRISCOE et al., 1986) e, em algumas circunstâncias, nas quais a variável de saúde empregada apresente manifestação relativamente comum, o estudo seccional (BRISCOE et al., 1986).
Nos estudos de caso descritos no item 2.3, a distribuição de freqüência dos métodos empregados, por grupo de estudos identificados e por período de tempo, foi:

FIGURA 20
DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O MÉTODO EPIDEMIOLÓGICO

FIGURA 21
DISTRIBUIÇÃO DOS ESTUDOS DE CASO SOBRE A ASSOCIAÇÃO ENTRE SANEAMENTO E SAÚDE, SEGUNDO O MÉTODO EPIDEMIOLÓGICO E A DÉCADA DE PUBLICAÇÃO

Apesar das dificuldades verificadas na identificação dos métodos nos diversos tipos de estudos, seja pela ausência de uma menção explícita, seja pela ocorrência de estudos com delineamentos híbridos, a distribuição realizada permite algumas observações. Inicialmente, a constatação da maior incidência dos estudos prospectivos, em primeiro lugar, e seccionais, em segundo. Outra observação diz respeito ao visível incremento do número de estudos ao longo do tempo, antevendo-se que serão bastante numerosos os estudos na presente década, haja visto que o levantamento abrangeu praticamente apenas os quatro anos iniciais do período. E, finalmente, o início do emprego do método caso-controle a partir da década de 80,
certamente como reflexo das recomendações do já referido *workshop* de Bangladesh, em 1983.

Com relação a esse último método, RODRIGUES & KIRKWOOD (1990) desenvolveram uma subclassificação, a partir da seleção da amostra controle. As seguintes variantes são, portanto, possíveis de serem adotadas em um estudo caso-controle:

TABELA 15

POSSÍVEIS VARIANTES EM UM ESTUDO CASO-CONTROLE

<table>
<thead>
<tr>
<th>VARIANTE</th>
<th>CONTROLE SELECIONADO DE</th>
<th>MEDIDA DE RISCO</th>
<th>FORMULAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusiva</td>
<td>População total</td>
<td>Risco relativo</td>
<td>$\frac{CE}{N} = \frac{CN}{N+NE}$</td>
</tr>
<tr>
<td>Concorrente</td>
<td>Pessoas sob risco</td>
<td>Razão de densidade de incidência</td>
<td>$\frac{CE}{pop} = \frac{CN}{N+NE}$</td>
</tr>
<tr>
<td>Tradicional</td>
<td>Pessoas não doentes ao longo do estudo</td>
<td>Odds ratio</td>
<td>$\frac{CE}{(NE-CE)} = \frac{CN}{(N+NE-CN)}$</td>
</tr>
</tbody>
</table>

FONTE: RODRIGUES & KIRKWOOD (1990)

LEGENDA:
- CE: casos expostos;
- CN: casos não expostos;
- NE: população inicialmente sob risco exposta;
- $N+NE$: população inicialmente sob risco não exposta;
- pop_{r}: número de pessoas-ano sob risco expostas;
- $pop_{r_{e}}$: número de pessoas-ano sob risco não expostas.

A variante inclusiva é também denominada de caso-coorte (PRENTICE, 1986), ou de estudo retrospectivo híbrido (KUPPER et al., 1975) ou ainda de caso-exposição (HOGUE et al., 1986). A distinção básica quanto ao estudo caso-controle tradicional reside no critério de seleção do grupo controle. No método caso-coorte, o grupo controle constitui-se de uma amostra de todos os indivíduos da população, e não de uma amostra de não casos. Apresenta como vantagem o fato de fornecer diretamente uma estimativa do risco relativo (RR), ao invés de uma diferente medida.
de risco - a *odds ratio* (OR) -, o que pode ser importante no caso de doenças não raras, onde o valor da OR não se aproxima do RR correspondente.
3- MATERIAL E MÉTODOS

3.1- ÁREA GEOGRÁFICA ABRANGIDA

A pesquisa foi desenvolvida no município de Betim, localizado na Região Metropolitana de Belo Horizonte - RMBH. A Tab. 16 apresenta os dados demográficos principais do município, nos dois últimos censoenamentos da Fundação Instituto Brasileiro de Geografia e Estatística - FIBGE, além dos mesmos dados para a RMBH, Minas Gerais e o Brasil. O município registrou elevada taxa de crescimento nesta última década, conforme pode ser observado.

TABELA 16

DADOS DEMOGRAFICOS DE BETIM, RMBH, MINAS GERAIS E BRASIL

<table>
<thead>
<tr>
<th>LOCALIDADE</th>
<th>POPULAÇÃO 1980 (hab.)</th>
<th>POPULAÇÃO 1991 (hab.)</th>
<th>TAXA ANUAL DE CRESCIMENTO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betim - pop. urbana</td>
<td>76.801(1)</td>
<td>161.346(2)</td>
<td>6,98</td>
</tr>
<tr>
<td>Betim - pop. total</td>
<td>84.183(1)</td>
<td>170.934(2)</td>
<td>6,65</td>
</tr>
<tr>
<td>RMBH - pop. total(3)</td>
<td>2.611.444</td>
<td>3.431.755</td>
<td>2,51</td>
</tr>
<tr>
<td>Minas Gerais - pop. urbana</td>
<td>8.982.134(1)</td>
<td>11.786.893(2)</td>
<td>2,50</td>
</tr>
<tr>
<td>Minas Gerais - pop. total</td>
<td>13.378.553(1)</td>
<td>15.743.152(2)</td>
<td>1,49</td>
</tr>
<tr>
<td>Brasil - pop. total(3)</td>
<td>119.002.706</td>
<td>146.154.502</td>
<td>1,89</td>
</tr>
</tbody>
</table>

FONTES: (1) FIBGE (1983)
(2) FIBGE (1991a)
(3) FIBGE (1991b)

A população urbana de Betim correspondia a 94% da população total do município, em 1991. Essa população urbana se distribui por 36.238 domicílios ocupados, correspondendo a uma taxa de 4,45 moradores por domicílios. No município, a média de cômodos por domicílio era de 5,26 (FIBGE, 1991a).

Com relação às condições de abastecimento de água, 30.666 domicílios (80,1%) estavam ligados à rede geral e eram dotados de canalizações internas (FIBGE, 1991a). Cerca de 92% das economias possuíam hidrometração e a rede de
12.751 domicílios estavam conectados à rede pública de esgotamento sanitário em 1991, correspondendo a uma parcela de 33,3% dos domicílios do município (FIBGE, 1991a). Esta rede correspondia a 140 km de canalizações, que coletavam 7.760 m³ de esgotos diariamente, dos quais apenas 192 m³ (2,5%) eram tratados (FIBGE, 1989). Com relação à limpeza pública, 80 toneladas de resíduos eram coletadas diariamente (FIBGE, 1989), correspondendo a 47,9% dos domicílios municipais (FIBGE, 1991a). Os demais domicílios dispunham o lixo residencial através de queima (33,2%), lançamento em terreno baldio (15,0%) e em cursos de água (2,7%), além de outras soluções.

Segundo pesquisa realizada pela Prefeitura Municipal (SECRETARIA MUNICIPAL DE SAÚDE, 1993), o principal grupo de causas de morbidade no município é o de doenças respiratórias, sendo que o grupo doenças infecciosas e parasitárias também ocupa importante papel no perfil epidemiológico local. A TAB. 17 apresenta as quatro principais causas de doenças no município, segundo três diferentes levantamentos. Embora observe-se uma certa inconsistência entre os resultados dos levantamentos, é evidente a importância das enfermidades relacionadas ao saneamento naquele contexto.

TABELA 17
PRINCIPAIS GRUPOS DE DOENÇAS VERIFICADOS NO MUNICÍPIO DE BETIM,
SEGUNDO FONTES DIVERSAS

<table>
<thead>
<tr>
<th>ORDEM DE CLASSIFICAÇÃO</th>
<th>REGISTROS NOS PRONUTUÁRIOS (%)</th>
<th>RELATOS DA POPULAÇÃO (%)</th>
<th>RELATOS DOS TRABALHADORES DA SAÚDE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ª</td>
<td>Doenças respiratórias (16,9)</td>
<td>Doenças respiratórias (40,6)</td>
<td>Doenças respiratórias (24,6)</td>
</tr>
<tr>
<td>2ª</td>
<td>Doenças infecto-parasitárias intestinais e hepatites (11,1)</td>
<td>Doenças cardiovasculares (12,6)</td>
<td>Doenças cardiovasculares (16,6)</td>
</tr>
<tr>
<td>3ª</td>
<td>Doenças da pele (8,2)</td>
<td>Doenças do sistema nervoso central e transtornos mentais (6,5)</td>
<td>Doenças infecto-parasitárias intestinais e hepatites (13,3)</td>
</tr>
<tr>
<td>4ª</td>
<td>Doenças do sistema nervoso central e transtornos mentais (5,7)</td>
<td>Doenças infecto-parasitárias intestinais e hepatites (5,7)</td>
<td>Desnutrição e anemia (13,3)</td>
</tr>
<tr>
<td>Tamanho da amostra</td>
<td>15.479 registros</td>
<td>1.503 indivíduos</td>
<td>211 indivíduos</td>
</tr>
</tbody>
</table>

FONTE: SECRETARIA MUNICIPAL DE SAÚDE - BETIM (1993)
Definiu-se como universo geográfico do estudo a sede municipal de Betim, da qual foram excluídos apenas aqueles assentamentos populacionais que não guardam uma continuidade urbanística com o núcleo urbano da sede. A FIG. 22 exibe a delimitação da área geográfica abrangida pela pesquisa.

A escolha da sede municipal de Betim como campo de pesquisa deveu-se, notadamente, aos seguintes fatores:

- constitui um local onde coexistem situações consideradas adequadas, com outras consideradas inadequadas, sob o ponto de vista do atendimento por serviços de saneamento;

- apresenta um quadro representativo, em termos de cobertura por serviços de saneamento, de uma importante parcela dos núcleos urbanos de Minas Gerais e do Brasil;

- o seu porte populacional permite a coleta da amostra de casos de diarreia infantil, ao longo de um período de tempo exequível;

- após contatos prévios, a Administração Municipal manifestou-se sensível à importância da pesquisa, propondo-se a fornecer apoio logístico para a sua execução.

Particularmente, a representatividade da área objeto dos estudos em termos da realidade dos municípios brasileiros, no que se refere às condições de saneamento, constitui um importante fator, dado o objetivo de desenvolvimento de um modelo metodológico, assumido no trabalho.
FIGURA 22
SEDE URBANA DE BETIM - ÁREA ABRANGIDA PELA PESQUISA

ESCALA: 1:100.000
3.2- **DELINEAMENTO EPIDEMIOLÓGICO**

Foi adotado o método caso-coorte no desenvolvimento do estudo. Tal opção apoiou-se em recentes tendências no campo da epidemiologia, que apontam para o aprimoramento do delineamento dos estudos caso-controle, especialmente no tocante à seleção do grupo controle (RODRIGUES & KIRKWOOD, 1990). No caso específico da variável de resultado adotada no estudo - enfermidades diarréicas infantis -, cuja incidência poderia não caracterizá-las como doença rara, a adoção do método caso-controle poderia indicar valores do "odds ratio" (OR) não condizentes com o risco relativo (RR) correspondente. Tais diferenças prejudicariam a interpretação dos riscos inerentes aos fatores de exposição analisados. Além disso, o emprego desse método possibilita, por um lado, minimizar vieses comumente verificados na seleção do grupo controle e, por outro, a estimativa da proporção de expostos na população.

A adoção do delineamento baseado no método caso-coorte teve por propósito, ainda, testar a aplicabilidade do método caso-controle tradicional em avaliações de impacto sobre a saúde de condições de saneamento. Tal análise é possível mediante a comparação entre o valor da estimativa do RR, obtido através do estudo caso-coorte, e o valor do "odds ratio" correspondente, avaliado através da simulação da composição tradicional do grupo controle, ou seja, excluindo-se, da amostra originalmente adotada para os controles, a parcela de doentes.

3.3- **DIMENSIONAMENTO DA AMOSTRA**

O dimensionamento de amostras para estudos caso-controle obedece a uma metodologia, hoje bastante consolidada e abundantemente descrita na literatura especializada.

Classicamente, para estudos sem pareamento e com a amostra de casos de igual tamanho à amostra de controles, a magnitude da amostra é definida por (SCHLESSELMAN, 1982):

\[n = \left[z_a \sqrt{2 \rho_0} + z_\beta \sqrt{p_1 q_1 + p_0 q_0} \right]^2 / (p_1 - p_0)^2 \] (1)
onde:

\[n = \text{tamanho da amostra para cada grupo;} \]
\[\alpha = \text{nível de significância, adotado como 0,05, equivalendo a afirmar que em 95\% de replicação da investigação, o resultado estará incluído no intervalo de confiança;} \]
\[(1-\beta) = \text{poder do teste ou força da associação, sendo que } \beta \text{ representa o erro de se concluir que a exposição } \text{não} \text{ é associada à doença, quando de fato o é;} \]
\[Z_\alpha, Z_\beta = \text{valores da distribuição normal, correspondentes a } \alpha \text{ e a } \beta, \text{ respectivamente;} \]
\[p_0 = \text{prevalência do fator de exposição nos controles;} \]
\[p_1 = \text{prevalência do fator de exposição nos casos;} \]
\[p = \frac{(p_0 + p_1)}{2}; \]
\[q_x = 1 - p_x. \]

Admitiu-se \(\beta \) igual a 0,10 e, em consequência, \(Z_\beta \) assume o valor de 1,28, para o teste de um lado. O valor de \(Z_\alpha \), para o teste de dois lados, corresponde a 1,96.

Considerando \(p_0 \) como a parcela da população total com acesso a serviços de saneamento ou dotada de hábitos higiênicos, avaliou-se o efeito de sua variação entre 0,20 e 0,90, em conjunto com a variação de \(\Delta = p_0 - p_1 \) entre 0,05 e 0,30. Obtiveram-se os valores para \(n \) e para o risco relativo (RR) expressos na TAB. 18, sabendo-se que a seguinte expressão relaciona \(p_0, \Delta \) e RR:

\[p_1 = \frac{p_0 \cdot RR}{1 + p_0 (RR - 1)} \]

(2)

A FIG. 23 ilustra a influência dos valores de \(p_0 \) e de \(\Delta \) no tamanho da amostra. Pode-se verificar que \(p_0 \), quando situado no intervalo entre 0,30 e 0,70, não afeta significativamente o tamanho da amostra. Esta é mais sensível à variação de \(\Delta \), o que determina valores de \(n \) próximos a 2.000, quando assume valores em torno de 0,05.
TABELA 18

TAMANHOS DA AMOSTRA, EM FUNÇÃO DE DIFERENTES RISCOS RELATIVOS

<table>
<thead>
<tr>
<th>p^0</th>
<th>Δ</th>
<th>RR</th>
<th>n</th>
<th>p^0</th>
<th>Δ</th>
<th>RR</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>0,05</td>
<td>1,42</td>
<td>1,210</td>
<td>0,60</td>
<td>0,05</td>
<td>1,23</td>
<td>2,050</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>2,25</td>
<td>266</td>
<td></td>
<td>0,10</td>
<td>1,50</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>4,75</td>
<td>100</td>
<td></td>
<td>0,15</td>
<td>1,83</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>∞</td>
<td>-</td>
<td></td>
<td>0,20</td>
<td>2,25</td>
<td>108</td>
</tr>
<tr>
<td>0,30</td>
<td>0,05</td>
<td>1,29</td>
<td>1,672</td>
<td>0,70</td>
<td>0,05</td>
<td>1,26</td>
<td>1,672</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,71</td>
<td>392</td>
<td></td>
<td>0,10</td>
<td>1,56</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>2,43</td>
<td>161</td>
<td></td>
<td>0,15</td>
<td>1,91</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>3,86</td>
<td>82</td>
<td></td>
<td>0,20</td>
<td>2,33</td>
<td>82</td>
</tr>
<tr>
<td>0,40</td>
<td>0,05</td>
<td>1,24</td>
<td>1,966</td>
<td>0,80</td>
<td>0,05</td>
<td>1,33</td>
<td>1,210</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,56</td>
<td>476</td>
<td></td>
<td>0,10</td>
<td>1,71</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>2,00</td>
<td>203</td>
<td></td>
<td>0,15</td>
<td>2,15</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>2,67</td>
<td>108</td>
<td></td>
<td>0,20</td>
<td>2,67</td>
<td>45</td>
</tr>
<tr>
<td>0,50</td>
<td>0,05</td>
<td>1,22</td>
<td>2,092</td>
<td>0,90</td>
<td>0,05</td>
<td>1,59</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>1,50</td>
<td>518</td>
<td></td>
<td>0,10</td>
<td>2,25</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>1,86</td>
<td>226</td>
<td></td>
<td>0,15</td>
<td>3,00</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>0,20</td>
<td>2,33</td>
<td>124</td>
<td></td>
<td>0,20</td>
<td>3,66</td>
<td>-</td>
</tr>
</tbody>
</table>

p^0 = prevalência do fator de exposição nos controles;
Δ = diferença de exposições entre controles e casos;
RR = risco relativo;
n = tamanho da amostra para casos ou controles.

FIGURA 23

RELAÇÃO ENTRE O TAMANHO DA AMOSTRA (n) E A DIFERENÇA DE EXPOSIÇÕES ENTRE CONTROLES E CASOS (Δ), PARA DIFERENTES VALORES DE p^0
Ocorre, entretanto, que os valores assim determinados pressupõem uma análise de fatores de exposição dicotómicos, não permitindo uma avaliação de diferentes níveis de atendimento por condições de saneamento. Para tal natureza de análise, necessária para os objetivos do presente trabalho, a magnitude da amostra tende a se elevar. BRISCOE et al. (1985) sugerem uma metodologia para esse dimensionamento, baseada em uma estimativa de ocorrência dos diversos níveis de exposição nos controles e na atribuição dos respectivos valores de risco relativo (RR). Por exemplo:

TABELA 19

EXEMPLO DE DIMENSIONAMENTO DE AMOSTRA PARA NÍVEIS MÚLTIPLOS DE EXPOSIÇÃO - RELAÇÃO ENTRE CASOS E CONTROLES

<table>
<thead>
<tr>
<th>ESTIMATIVA DE OCORRÊNCIA</th>
<th>NOS CONTROS</th>
<th>RR (arbitrado)</th>
<th>CASOS</th>
<th>CONTROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALTAS DE ÁGUA (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diária</td>
<td>5</td>
<td>2,0</td>
<td>z / 6</td>
<td>y / 12</td>
</tr>
<tr>
<td>Semanal</td>
<td>5</td>
<td>1,8</td>
<td>z / 6,67</td>
<td>y / 12</td>
</tr>
<tr>
<td>Mensal</td>
<td>10</td>
<td>1,4</td>
<td>z / 4,29</td>
<td>y / 6</td>
</tr>
<tr>
<td>Inferior mensal</td>
<td>20</td>
<td>1,2</td>
<td>z / 2,50</td>
<td>y / 3</td>
</tr>
<tr>
<td>Não</td>
<td>60</td>
<td>1,0</td>
<td>z</td>
<td>y</td>
</tr>
</tbody>
</table>

A determinação da amostra necessária para a comparação entre a falta de água *diária* e a ausência de falta de água (*α = 0,05; β = 0,10*) é assim realizada:

\[
\text{Exposição} = \frac{5}{60 + 5} = 7,6% \\
\]

\[
n = 600 \text{ (segundo equação 1).}
\]

Logo,

\[
\frac{z}{6} + z = 600 \text{ e} \\
y / 12 + y = 600.
\]

Portanto,

\[
z = 514, \\
y = 554, \\
z / 6 = 86 \text{ e} \\
y / 12 = 46.
\]
Aplicando-se o raciocínio sobre todos os demais fatores, obtem-se:

TABELA 20

EXEMPLO DE DIMENSIONAMENTO DE AMOSTRA PARA NÍVEIS MÚLTIPLOS DE EXPOSIÇÃO - TAMANHO DA AMOSTRA

<table>
<thead>
<tr>
<th>Ausência de Fornecimento de Água</th>
<th>Tamanho da Amostra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diária</td>
<td>86</td>
</tr>
<tr>
<td>Semanal</td>
<td>77</td>
</tr>
<tr>
<td>Mensal</td>
<td>120</td>
</tr>
<tr>
<td>Inferior mensal</td>
<td>206</td>
</tr>
<tr>
<td>Ausência mensal</td>
<td>514</td>
</tr>
<tr>
<td>Total</td>
<td>1.003</td>
</tr>
</tbody>
</table>

Controles	46
	46
	92
	184
	554
	922

Assumindo que 90% da amostra recebe água do sistema público e 10% de outras fontes, o tamanho da amostra necessário seria:

\[
\text{Casos =} \frac{1.003}{0.90} = 1.114 \\
\text{Controles =} \frac{922}{0.90} = 1.024
\]

O método de determinação do tamanho da amostra para múltiplos níveis de exposição é muito sensível à atribuição da ocorrência das diversas exposições e dos RR. Na presente pesquisa, tal metodologia poderia conduzir a valores da amostra - casos ou controles - entre 1.000 e 3.000 indivíduos, dependendo do tipo de exposição em análise.

A respeito do dimensionamento da amostra para múltiplos níveis de exposição, BRISCOE et al. (1988) sugerem amostras de cerca de 1.500 casos e 1.500 controles, afirmando que esse valor pode atingir a 2.500, dependendo da magnitude dos efeitos que se deseja avaliar.

Em função das precedentes constatações, optou-se por fixar a amostra em 1.000 casos e 1.000 controles, correspondente a cerca de duas vezes a amostra necessária para o estudo de apenas uma variável, com Δ = 0,10 e p0 entre 0,30 e 0,60, e de magnitude operacionalmente exequível nos limites da presente pesquisa. É importante salientar o caráter de teste de metodologia, com o qual se revestiu a
pesquisa, conduzindo a que a própria dimensão da amostra pudesse se constituir em um dos elementos a serem testados.

3.4- PROTOCOLO ADOTADO

O protocolo aplicado nas entrevistas foi inicialmente elaborado com um formato preliminar, tendo por base a visualização dos objetivos da pesquisa e as referências localizadas na literatura, relativas às variáveis de resultado, de exposição e de confusão comumente analisadas.

Após o desenvolvimento desta primeira versão, a mesma foi distribuída para sete especialistas das áreas de Engenharia Sanitária e Ambiental, Epidemiologia e Estatística, para comentários. As questões de natureza sócio-econômica foram elaboradas após consulta a professores do Departamento de Sociologia da UFMG.

Concomitantemente, a versão foi submetida a um pré-teste de campo, no dia 09/09/93, realizado por quatro diferentes entrevistadores, cada qual aplicando-o a três famílias, residentes em bairros diferentes de Betim. Em seguida, realizou-se um seminário entre os quatro entrevistadores, durante o qual discutiram-se a estrutura global do questionário e cada uma de suas perguntas, inclusive sob o aspecto da compreensão de sua linguagem pela população.

Finalmente, de posse dos comentários dos especialistas e da crítica oriunda do pré-teste, desenvolveu-se a versão definitiva do questionário. Os ANEXOS A e B apresentam, respectivamente, o protocolo adotado para os casos e para os controles, cuja estrutura básica compreende as seguintes seções:

- Termo de aceitação.
- Caracterização da população residente na casa.
- Caracterização da criança.
- Caracterização sócio-econômica da família.
- Caracterização da casa.
- Abastecimento de água e higiene pessoal.
- Esgotamento sanitário e presença de cursos d'água nas proximidades.
- Acondicionamento e destino do lixo doméstico.
- Comportamento das águas pluviais.
• Presença de vetores.
• Validação, pela observação in loco, de informações.

Complementarmente ao questionário, foram elaborados ainda impressos para registro das visitas dos casos (ANEXO C) e dos controles (ANEXO D) e uma ficha para registro de casos de diarréia nos controles (ANEXO E).

3.5- **SELEÇÃO DOS CASOS**

Foi estabelecida a seguinte definição para caso:

> Criança com até cinco anos de idade residente na sede urbana de Betim, que tenha sido atendida em instituição de saúde localizada na mesma sede urbana, da rede pública ou privada, com relato de diarréia.

As instituições de saúde envolvidas na pesquisa abrangeram todos as policlínicas, postos de saúde e hospitais, além das clínicas e consultórios particulares, localizados na sede urbana do município, configurando um total de 29 instituições, sendo 15 públicas e 14 privadas, conforme apresentado na TAB. 21.

A metodologia desenvolvida para a coleta dos casos constou inicialmente de visitas a todas as instituições de saúde, durante as quais manteve-se uma reunião com os respectivos responsáveis, objetivando estabelecer os profissionais a serem encarregados da coleta. Dependendo da natureza da rotina operacional da instituição, os responsáveis pela coleta dos casos foram definidos como os atendentes da recepção, funcionários do SAME - Serviço de Arquivo Médico e Estatística - ou os próprios médicos pediatras.
TABELA 21

RELAÇÃO DAS INSTITUIÇÕES DE SAÚDE INCLUÍDAS NA COLETA DE CASOS

<table>
<thead>
<tr>
<th>CODIFICAÇÃO</th>
<th>INSTITUIÇÃO DE SAÚDE</th>
<th>SITUAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-PB</td>
<td>Policiônica Geraldo Delfino Marques (Imbiruçu)</td>
<td></td>
</tr>
<tr>
<td>02-PB</td>
<td>Policiônica Aloides Brás</td>
<td></td>
</tr>
<tr>
<td>03-PB</td>
<td>Centro de Saúde Divino Ferreira Braga</td>
<td></td>
</tr>
<tr>
<td>04-PB</td>
<td>Centro de Saúde Wilson de Oliveira Antunes (Cachoeira)</td>
<td></td>
</tr>
<tr>
<td>05-PB</td>
<td>Centro de Saúde Antônio José Salomão (Alterosas)</td>
<td>P</td>
</tr>
<tr>
<td>06-PB</td>
<td>Centro de Saúde Dom Bosco</td>
<td>Ú</td>
</tr>
<tr>
<td>07-PB</td>
<td>Centro de Saúde João Gregório Ferreira (Alvorada)</td>
<td>B</td>
</tr>
<tr>
<td>08-PB</td>
<td>Centro de Saúde Riacho III</td>
<td>L</td>
</tr>
<tr>
<td>09-PB</td>
<td>Centro de Saúde Rosa Capuche (Jardim Petrópolis)</td>
<td>I</td>
</tr>
<tr>
<td>10-PB</td>
<td>Centro de Saúde Antônio Caetano (Laranjeiras)</td>
<td>C</td>
</tr>
<tr>
<td>11-PB</td>
<td>Centro de Saúde Rogério Gustavo Resende (Novo Horizonte)</td>
<td>A</td>
</tr>
<tr>
<td>12-PB</td>
<td>Centro de Saúde Romero Giuseppe Lazzarotti</td>
<td></td>
</tr>
<tr>
<td>13-PB</td>
<td>Centro de Saúde Maria Oliveira Silva (Bueno Franco)</td>
<td></td>
</tr>
<tr>
<td>14-PB</td>
<td>Centro de Saúde Manoel Juvêncio (Cidade Verde)</td>
<td></td>
</tr>
<tr>
<td>15-PB</td>
<td>Policiônica Geralina Augusta Braga (PTB)</td>
<td></td>
</tr>
<tr>
<td>01-PV</td>
<td>Clínica da Criança</td>
<td></td>
</tr>
<tr>
<td>02-PV</td>
<td>Clínica Santa Maria</td>
<td></td>
</tr>
<tr>
<td>03-PV</td>
<td>Clínica São Lucas</td>
<td></td>
</tr>
<tr>
<td>04-PV</td>
<td>Center Clínica</td>
<td></td>
</tr>
<tr>
<td>05-PV</td>
<td>FEF - Fundação dos Empregados da FIAT Centro de Saúde</td>
<td>P</td>
</tr>
<tr>
<td>06-PV</td>
<td>Hélio Krollmann Clínica Pediátrica</td>
<td>P</td>
</tr>
<tr>
<td>07-PV</td>
<td>Centro Médico JK</td>
<td>R</td>
</tr>
<tr>
<td>08-PV</td>
<td>Núcleo Médico</td>
<td>I</td>
</tr>
<tr>
<td>09-PV</td>
<td>Clínica São Geral</td>
<td>V</td>
</tr>
<tr>
<td>10-PV</td>
<td>AMPLA</td>
<td>A</td>
</tr>
<tr>
<td>11-PV</td>
<td>Centro Médico Geralo</td>
<td>D</td>
</tr>
<tr>
<td>12-PV</td>
<td>CLIBET</td>
<td>A</td>
</tr>
<tr>
<td>13-PV</td>
<td>CENTRALMED</td>
<td></td>
</tr>
<tr>
<td>14-PV</td>
<td>Hospital UNIMED</td>
<td></td>
</tr>
</tbody>
</table>

Para as instituições públicas, essa visita foi precedida da participação da equipe da pesquisa em duas reuniões, que se realizavam semanalmente entre a direção da Secretaria Municipal de Saúde e os gerentes dos postos de saúde e policlínicas. Na primeira reunião, descreveu-se um panorama geral da pesquisa e as expectativas de envolvimento da administração municipal e, na segunda, anunciou-se mais especificamente o início da fase de coleta dos casos, discutindo-se em conjunto a mais apropriada rotina a ser obedecida. Nessa oportunidade, ficou estabelecido inclusive o procedimento de se remunerar os profissionais responsabilizados pela coleta, em função do número de registros realizados.
Após definidos os responsáveis pela coleta, os mesmos foram devidamente orientados quanto ao procedimento a ser seguido, que se resume no preenchimento da ficha apresentada na FIG. 24.

A coleta dos casos iniciou-se no dia 20/12/93. Após 20 dias de andamento do processo, foi realizada uma aferição da eficácia do método implantado, através de uma pesquisa aos arquivos dos prontuários. Tal pesquisa conduziu à conclusão de que estava ocorrendo uma elevada perda de casos, por um lado, e, por outro, embora em menor grau, o registro de falsos casos.

Em função dessa constatação, foi desenvolvido um novo método de coleta de casos, o qual foi implantado a partir da segunda quinzena de janeiro de 1994, de forma concomitante com o procedimento anterior, que não foi abandonado. O segundo método constou de uma verificação semanal das consultas pediátricas ocorridas nas diversas instituições de saúde, identificando-se aquelas onde era relatada diarreia. Foi necessário se planejar um método específico para cada situação, dadas as diversidades com que se desenvolvem as rotinas operacionais e a forma como são organizados os arquivos médicos.
FICHA - REGISTRO DE CASOS DE DIARRÉIA
(CRIANÇAS COM ATÉ 5 ANOS COMPLETOS)

NOME DA CRIANÇA: __ DATA DE NASCIMENTO ______/____/____
ENDEREÇO: __ N° ______ BAIRRO ________________________
REFERÊNCIA PARA LOCALIZAÇÃO DA CASA ________________________________

A diarréia veio acompanhada de:

- febre (81)
- vômito (82)
- sangue nas fezes (83)
- secreção nas fezes (84)

(85) Quando foi a última vez que a criança foi levada a um serviço de saúde para tratar de diarréia?

- 0 não sabe
- 1 menos de uma semana atrás
- 2 entre uma e duas semanas
- 3 entre duas semanas e um mês
- 4 entre um e dois meses
- 5 mais de dois meses
- 6 é a primeira vez
- 9 não quis responder.

POSTO DE SAÚDE __
ATENDENTE ___

______________________________ ________________________________
Nome Assinatura Data

FIGURA 24
FICHA DE REGISTRO DE CASOS DE DIARRÉIA
Nesse sentido, as FIG. 25 a 28 descrevem esquematicamente o fluxo de procedimentos adotados nas diversas instituições públicas e privadas. A instituição 03-PB, não incluída nos referidos diagramas, operava como pronto atendimento no período, sendo que a coleta dos casos realizou-se através de consulta direta aos prontuários.

Saliente-se que, nessa segunda forma de coleta dos casos, verificou-se uma extrema dificuldade de acesso aos arquivos de algumas clínicas e consultórios particulares, sendo que nas instituições 02-PV, 03-PV, 06-PV, 07-PV, 08-PV, 10-PV, 11-PV e 12-PV houve recusa de permissão de consulta a esses arquivos, por parte dos médicos responsáveis.

A coleta dos casos estendeu-se até o dia 04/04/94, quando foi completada a amostra estabelecida. A TAB. 22 apresenta a distribuição semanal dos casos coletados e a TAB. 23 a distribuição dos casos, segundo as instituições de saúde e o método de coleta.

TABELA 22

DISTRIBUIÇÃO SEMANAL DOS CASOS

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>NÚMERO DE CASOS</th>
<th>SEMANA</th>
<th>NÚMERO DE CASOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/12/93 a 25/12/93</td>
<td>58</td>
<td>20/02/94 a 26/02/94</td>
<td>66</td>
</tr>
<tr>
<td>26/12/93 a 01/01/94</td>
<td>54</td>
<td>20/02/94 a 26/02/94</td>
<td>66</td>
</tr>
<tr>
<td>02/01/94 a 08/01/94</td>
<td>48</td>
<td>27/02/94 a 05/03/94</td>
<td>70</td>
</tr>
<tr>
<td>09/01/94 a 15/01/94</td>
<td>71</td>
<td>06/03/94 a 12/03/94</td>
<td>58</td>
</tr>
<tr>
<td>16/01/94 a 22/01/94</td>
<td>70</td>
<td>13/03/94 a 19/03/94</td>
<td>69</td>
</tr>
<tr>
<td>23/01/94 a 29/01/94</td>
<td>73</td>
<td>20/03/94 a 26/03/94</td>
<td>51</td>
</tr>
<tr>
<td>30/01/94 a 05/02/94</td>
<td>70</td>
<td>27/03/94 a 02/04/94</td>
<td>64</td>
</tr>
<tr>
<td>06/02/94 a 12/02/94</td>
<td>95</td>
<td>03/04/94 a 09/04/94</td>
<td>11</td>
</tr>
<tr>
<td>13/02/94 a 19/02/94</td>
<td>69</td>
<td>Total</td>
<td>997</td>
</tr>
</tbody>
</table>
FIGURA 25
INSTITUIÇÕES 11-PB, 15-PB E 05-PV
METODOLOGIA PARA A COLETA DE CASOS
FIGURA 26

INSTITUIÇÕES 02-PB, 04-PB, 05-PB, 06-PB, 07-PB, 08-PB, 09-PB, 10-PB, 12-PB, 13-PB E 14-PB

METODOLOGIA PARA A COLETA DE CASOS
FIGURA 27
INSTITUIÇÃO 01-PB
METODOLOGIA PARA A COLETA DE CASOS
FIGURA 28
INSTITUIÇÃO 14-PV
METODOLOGIA PARA A COLETA DE CASOS

Diagnóstico sugere diarreia (entero-infeccão, enterite, infecção intestinal, desidratação).
<table>
<thead>
<tr>
<th>INSTITUIÇÃO DE SAÚDE</th>
<th>COLETA PELA PRÓPRIA INSTITUIÇÃO</th>
<th>COLETA ATRAVÉS DE CONSULTA AOS ARQUIVOS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-PB</td>
<td>57</td>
<td>155</td>
<td>213</td>
</tr>
<tr>
<td>02-PB</td>
<td>5</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>03-PB</td>
<td>37</td>
<td>321</td>
<td>358</td>
</tr>
<tr>
<td>04-PB</td>
<td>4</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>05-PB</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>06-PB</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>07-PB</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>08-PB</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>09-PB</td>
<td>13</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>10-PB</td>
<td>12</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>11-PB</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>12-PB</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>13-PB</td>
<td>10</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>14-PB</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15-PB</td>
<td>16</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>01-PV</td>
<td>11</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>02-PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03-PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04-PV</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>05-PV</td>
<td>7</td>
<td>47</td>
<td>54</td>
</tr>
<tr>
<td>06-PV</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>07-PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08-PV</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>09-PV</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10-PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11-PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12-PV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13-PV</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>14-PV</td>
<td>21</td>
<td>61</td>
<td>82</td>
</tr>
<tr>
<td>Sem identificação</td>
<td>1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>241</td>
<td>756</td>
<td>997</td>
</tr>
</tbody>
</table>
3.6- **SELEÇÃO DOS CONTROLES**

Cada controle foi definido como:

> Criança com até cinco anos de idade, aleatoriamente escolhida no universo da população residente na sede urbana de Betim.

A seleção dos controles foi realizada mediante um sorteio das moradias registradas no "Cadastro Imobiliário - regime de utilização residencial" da Prefeitura Municipal de Betim (PREFEITURA MUNICIPAL DE BETIM, 1993), de outubro/93. Esse cadastro é o utilizado para a emissão das guias de cobrança do Imposto Predial e Territorial Urbano. Seu formato inclui, em cada linha, uma unidade residencial, sendo excluídos os lotes vagos. Para cada unidade, constam o nome do contribuinte, o endereço do imóvel e a sua inscrição imobiliária.

O documento é constituído de 558 páginas, de 49 linhas cada, totalizando 27.312 registros. As páginas posteriores à de número 549 incluem apenas residências fora da sede urbana. Para a realização do sorteio, foram formulados os seguintes algoritmos:

\[
PAG = \text{INT} \left[(\text{RAN} \times 549) + 1 \right] \tag{2}
\]

\[
LIN = \text{INT} \left[(\text{RAN} \times 49) + 1 \right] \tag{3}
\]

onde:

- **PAG** = número da página sorteada;
- **LIN** = número da linha sorteada, na página correspondente;
- **RAN** = número aleatório;
- **INT** = função "parte inteira do número decimal".

Os números aleatórios foram gerados por um compilador TurboBasic, na sequência interna de geração do programa, tendo sido atribuídos, alternadamente, ao algoritmo (2) e ao algoritmo (3). A semente para a geração do primeiro número foi adotada como sendo o número do temporizador do compilador, no momento de execução do programa, igual a 53350,55859375. Tal procedimento permite a reprodutibilidade da série.
Foram gerados 1.300 pares número de página - número de linha. Adotaram-se inicialmente os primeiros 1.000 registros, tendo ficado os 300 restantes para emprego na hipótese de anulação de pares da relação inicial.

Padronizaram-se procedimentos para a definição dos controles, tendo sido obedecidos sempre que cada situação se verificava. Os procedimentos foram estabelecidos segundo as definições apresentadas na TAB. 24.

TABELA 24

PROCEDIMENTOS ADOTADOS NA SELEÇÃO DOS CONTROLES

<table>
<thead>
<tr>
<th>SITUAÇÃO</th>
<th>PROCEDIMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Par repetido.</td>
<td>Adoção de novo par (lista complementar aos 1.000 pares).</td>
</tr>
<tr>
<td>• Endereço fora da sede.</td>
<td></td>
</tr>
<tr>
<td>• Falta de numeração da casa (S/N).</td>
<td>Endereço da linha imediatamente anterior no Cadastro Imobiliário.</td>
</tr>
<tr>
<td>• Casa sem criança menor de 5 anos.</td>
<td>Endereço imediatamente à esquerda, sucessivamente.</td>
</tr>
<tr>
<td>• Três ocorrências de recusa e/ou casa vazia.</td>
<td></td>
</tr>
<tr>
<td>• Quadra completamente contornada, pelas visitas às casas da esquerda, sem a realização da entrevista.</td>
<td>Adoção de novo par da lista complementar do sorteio.</td>
</tr>
<tr>
<td>• Número existente na listagem, porém inexistente na realidade do campo.</td>
<td>Número à esquerda da localização hipotética do número da listagem.</td>
</tr>
<tr>
<td>• Apartamento sem criança menor de 5 anos ou ainda com três ocorrências de recusa e/ou vazio.</td>
<td>Apartamento com numeração imediatamente superior.</td>
</tr>
<tr>
<td>• Maior numeração de apartamento do edifício com entrevista não realizada.</td>
<td>Edificação residencial localizada no lote imediatamente à esquerda.</td>
</tr>
</tbody>
</table>

As entrevistas com os controles iniciaram-se em 23/11/93, concentrando-se até 18/12/93. Algumas entrevistas remanescentes foram concluídas até 22/04/94.

A TAB. 27 (CAP. 4) ilustra a distribuição dos controles pelos bairros de Betim, segundo a divisão e a nomenclatura adotados no Cadastro Imobiliário da Prefeitura Municipal.
3.7- REALIZAÇÃO DAS ENTREVISTAS

As entrevistas foram realizadas por equipe contratada especificamente para esse fim, recrutada entre pessoal residente em Betim, que já havia desenvolvido trabalhos de pesquisa de campo para a Prefeitura Municipal, na área de transporte urbano. Os contratados possuem, pelo menos, o primeiro grau completo.

Após uma seleção preliminar de doze entrevistadores, foi aplicado um treinamento, com doze horas de duração. O treinamento teve a função complementar de avaliar o pessoal e de realizar uma seleção final, que determinou um número de dez entrevistadores para o início do trabalho de campo. O procedimento constou de:
- explanação detalhada de todos os itens do questionário;
- aplicação, em sala, de questionários-teste (cada entrevistador aplicando e respondendo um questionário);
- aplicação em campo de um questionário;
- discussão do teste de campo.

A equipe selecionada iniciou com as entrevistas dos controles, tendo sido, nessa fase, zoneada a região urbana segundo dez grupos de bairros. Os grupos foram definidos conforme os critérios de proximidade e buscando-se aproximadamente o mesmo valor total de população entre os grupos. Distribuíram-se os grupos entre os entrevistadores, sendo que o grupo atribuído para cada entrevistador não continha o bairro onde este residia. Nessa fase, ocorreram algumas substituições de pessoal e cada novo entrevistador recrutado recebeu um treinamento individual.

Na segunda fase - entrevistas dos casos - a equipe foi reduzida para três entrevistadores e um novo agrupamento dos bairros foi estabelecido.

Em uma periodicidade previamente acertada, a coordenação da pesquisa recebia as entrevistas realizadas, fazendo uma verificação básica da coerência das respostas, e distribuía novos questionários para o período seguinte. Essa periodicidade sofreu algumas variações, tendo sido em média três vezes por semana, na primeira fase, e duas vezes por semana, na segunda.

Procurou-se adotar o procedimento duplo-cego nas entrevistas. Nas entrevistas realizadas com os controles houve o respeito a essa premissa, uma vez que
entrevistadores e entrevistados desconheciam o objetivo posterior de comparação dos resultados com os de entrevistas de crianças com diarreia.

Nas entrevistas com os casos, o procedimento duplo-cego foi apenas parcialmente obtido, isso porque, na medida em que as entrevistas se desenvolviam em paralelo ao levantamento dos casos, os entrevistadores foram gradativamente se apercebendo dos critérios de seleção dos casos, apesar dos cuidados adotados, prevalecendo nessas situações o procedimento simples-cego. Evidências houve ainda, após esse instante, de que, a despeito de orientações em contrário, a informação sobre o critério de seleção da criança entrevistada foi divulgada pelo entrevistador em algumas situações, sobretudo no intuito de facilitar a localização dos endereços imprecisos.

Concomitantemente com o recebimento dos questionários, os mesmos eram digitados em um banco de dados, desenvolvido para o software MS-ACCESS FOR WINDOWS (JENNINGS & PERSON, 1993). Dúvidas surgidas durante a digitação eram esclarecidas pela coordenação ou, quando necessário, era consultado o respectivo entrevistador.

Posteriormente, toda a digitação foi repetida, por digitador diferente do inicial, e os dois arquivos foram comparados, através do software EPI INFO (DEAN et al., 1990). Divergências foram sanadas, através da consulta aos formulários das entrevistas.

Adicionalmente à coleta de dados através da aplicação dos protocolos, foram ainda pesquisados dados relativos ao consumo de água, em cada moradia interligada à rede pública. Para tanto, consultou-se a listagem de micromedição da Companhia de Saneamento de Minas Gerais - COPASA-MG. Algumas considerações foram assumidas, na obtenção do dado:

- adotou-se o consumo verificado no mês da entrevista, quase sempre coincidente com o mês da consulta dos casos;

- nas ligações com mais de uma economia, e quando a moradia entrevistada não mostrou-se identificável, foi adotada a média aritmética dos consumos, desde que a diferença entre eles fosse inferior a 30%; caso contrário, o dado foi abandonado;

- apenas as economias do tipo residencial foram consideradas.
3.8- **TESTE DE CONFIABILIDADE**

Uma subamostra de 10% do universo pesquisado foi selecionada, para efeito de teste de confiabilidade.

Foram sorteados aleatoriamente 200 números, entre 1 e 1000, seguindo o procedimento descrito no item 3.6.

Os números sorteados foram subdivididos em quatro grupos de 50, que, na seqüência, tiveram os seguintes significados:

- **grupo 1:** teste de casos - mesmo entrevistador;
- **grupo 2:** teste de casos - outro entrevistador;
- **grupo 3:** teste de controles - mesmo entrevistador;
- **grupo 4:** teste de controles - outro entrevistador.

Houve substituição de números entre os grupos 1 e 2 e entre os grupos 3 e 4, quando o espaço de tempo entre entrevista e teste era inferior a 30 dias. Números repetidos foram substituídos por números sorteados adicionalmente.

Os testes foram realizados entre os dias 11/04/94 e 17/05/94.

A verificação da proporção de concordância entre entrevistas e testes, para cada variável, foi desenvolvida através da estatística "kappa". As seguintes fórmulas foram empregadas (FLEISS, 1981):

\[
p_0 = \sum_{i=1}^{k} p_{ii}
\]

\[
p_e = \sum_{i=1}^{k} (p_{i.})(p_{.i})
\]

\[
\overline{k} = \frac{p_0 - p_e}{1 - p_e}
\]

sendo

\[
\overline{k} = \text{estatística "kappa"};
\]

\[
p_0 = \text{proporção global de concordâncias observadas};
\]
\[p_e = \] proporção global de concordâncias esperadas por chance;
\[p_i = \] células concordantes em uma tabela de contingência \(n \times n \);
\[p_{i,i} = \] somatório da linha \(i \);
\[p_{i,i} = \] somatório da coluna \(i \);
\[k = \] número de categorias.

O erro padrão de \(K \) e o valor de \(z \) para a distribuição normal são dados, respectivamente, por:

\[
\text{s.e.} \theta(K) = \frac{1}{(1-p_e)\sqrt{n}} \sqrt{p_e + p_e^2 - \sum_{i=1}^{n} p_i p_i (p_i + p_i)}
\]

\[
z = \frac{K}{\text{s.e.} \theta(K)}
\]

sendo que \(z \) testa a hipótese nula de que \(K \) é igual a 0, ou seja, de que entrevistas e testes são independentes.

3.9- ANÁLISE DE DADOS

3.9.1- METODOLOGIA ADOTADA

A análise de dados obedeceu a uma sequência de tratamentos estatísticos das informações qualitativas e quantitativas coletadas. Objetivou-se, com esta metodologia, um conhecimento gradual das associações existentes entre a variável de resultado e as variáveis de exposição, bem como a influência das variáveis confundíveis e a existência de modificações de efeito. As seções que se sucedem apresentam a descrição, segundo a ordem de desenvolvimento, de cada uma das etapas.

Os dados foram organizados através da planilha eletrônica MS-EXCEL 4 FOR WINDOWS (THE COBB GROUP, 1993) antes de seu processamento. Para a análise dos dados foram empregados os softwares SYSTAT (WILKINSON et al., 1992), EPI INFO (DEAN et al., 1990) e MULTLR (CAMPOS FILHO & FRANCO, 1988), além de programas elaborados em calculadora portátil Hewlett-Packard, modelo 11C. Os
processamentos computacionais foram realizados em computador PC 486-DX, adquirido especificamente para a pesquisa através do convênio TEC 377/81, com a Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG. O equipamento foi instalado no Departamento de Engenharia Sanitária e Ambiental da UFMG.

3.9.2- DISTRIBUIÇÃO DE FREQUÊNCIAS

Para cada variável qualitativa, foi desenvolvida uma distribuição de frequências entre os grupos caso e controle, determinando-se a frequência e a incidência percentual de cada categoria. Nessa etapa, foi ainda identificada a frequência de ocorrência das categorias 0 (não sabe), 8 (não se aplica) e 9 (recusa). A diferença de frequências de cada categorias, entre os dois grupos, foi comparada estatisticamente através do teste do qui-quadrado, o qual, para uma tabela 2x2 assume a seguinte formulação (FLEISS, 1981):

\[\chi^2_{lg} = \frac{\left| a d - c b \right| - \frac{N}{2}}{(a + b)(c + d)(a + c)(b + d)} N \]

onde \(a, b, c \) e \(d \) representam as células da tabela 2x2, \(N \) o tamanho total da amostra em análise. \(\chi^2_{lg} \) corresponde ao qui-quadrado com um grau de liberdade, cujo valor é relacionado a um determinado erro \(\alpha \), ou seja, a um determinado nível de significância.

Na determinação do qui-quadrado, optou-se pelo emprego do teste exato de Fisher, quando alguma célula apresentava frequência esperada inferior a 5 ou quando \(N \) era inferior a 20 (ARMITAGE, 1980).

Além disso, para as variáveis onde o número de categorias é superior a 2, empregou-se a formulação apropriada do teste do qui-quadrado (FLEISS, 1981). Nessas situações, quando o teste demonstrou uma diferença significativa entre as proporções, a identificação das categorias estatisticamente diferentes foi realizada através da comparação ortogonal (SNEDECOR & COCHRAN, 1980).
Quanto às variáveis quantitativas, foi realizado um teste de diferenças de médias entre os grupos caso e controle, tendo sido empregado o teste t de Student para amostras não pareadas (ARMITAGE, 1980):

\[
t = \frac{\bar{x}_1 - \bar{x}_2}{EP(\bar{x}_1 - \bar{x}_2)}
\]

sendo

\(\bar{x}_1, \bar{x}_2\) = médias;

\(EP\) = erro padrão da amostra, função da variância e da magnitude das duas amostras \(n_1\) e \(n_2\).

O valor de \(t\), com \((n_1 + n_2 - 1)\) graus de liberdade, é relacionado a um determinado nível de significância.

3.9.3- ANÁLISE UNIVARIADA

3.9.3.1- ESTIMATIVA DO RISCO RELATIVO (RR)

Foi determinada, para as variáveis de exposição, a estimativa dos riscos relativos (RR), objetivando quantificar a força de associação entre exposição e doença. O cálculo de RR foi realizado a partir de tabelas 2x2, através da seguinte formulação:

TABELA 25

FORMULAÇÃO ESQUEMÁTICA DO ESTUDO CASO-CONTROLE

<table>
<thead>
<tr>
<th></th>
<th>CASO</th>
<th>CONTROLE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSTO</td>
<td>a</td>
<td>b</td>
<td>m₁</td>
</tr>
<tr>
<td>NÃO EXPOSTO</td>
<td>c</td>
<td>d</td>
<td>m₂</td>
</tr>
<tr>
<td>TOTAL</td>
<td>n₁</td>
<td>n₂</td>
<td>n</td>
</tr>
</tbody>
</table>

\[
RR = \frac{a \cdot b}{c \cdot d}
\]

Valores de RR superiores a 1 indicam que a exposição implica em risco e valores inferiores a 1 indicam que a exposição é protetora, em relação ao risco de adoecer.
3.9.3.2- INTERVALO DE CONFIANÇA DO RR

Os limites do intervalo de confiança de RR a 95% foram estimados através do método de Cornfield (SCHLESSELMAN, 1982):

\[RR_l = \alpha (n_2 - m_1 + \alpha) / (m_1 - \alpha)(n_1 - \alpha) \]
\[RR_s = \alpha s (n_2 - m_1 + \alpha s) / (m_1 - \alpha s)(n_1 - \alpha s) \]

onde \(RR_l \) e \(RR_s \) são, respectivamente, os limites inferior e superior do RR. A determinação de \(\alpha \) e \(\alpha s \) realiza-se mediante um procedimento iterativo, conforme expressão a seguir, onde define-se \(a_0 = a \) e atribuem-se valores crescentes para \(i \), até que \(a_i \) converja a \(a \) e a \(\alpha s \), respectivamente empregando-se os sinais negativo e positivo da fórmula:

\[a = a \pm 1/2 \pm z_a [(a_{i-1})^{-1} + (m_1 - a_{i-1})^{-1} + (n_1 - a_{i-1})^{-1} + (n_2 - m_1 + a_{i-1})^{-1}]^{1/2} \]

A amplitude do intervalo de confiança do RR é influenciado principalmente pelo tamanho da amostra. Maiores amostras implicam em um intervalo de confiança menos disperso em torno da estimativa pontual do RR. Na interpretação do intervalo de confiança, pode-se afirmar que, quando este não inclui a unidade, a associação entre exposição e doença é estatisticamente significativa.

3.9.3.3- ANÁLISE DE TENDÊNCIA

Para aquelas variáveis onde é possível se caracterizar um gradiente dose-resposta, como grau de instrução dos pais e freqüência de ocorrência de vetores, foi desenvolvida uma análise de tendência, através de método proposto por Mantel (SCHLESSELMAN, 1982). Segundo o método, determina-se o valor do qui-quadrado para tendência, cuja significância reflete a ocorrência de uma tendência entre dose e o RR correspondente.

As seguintes expressões foram empregadas (SCHLESSELMAN, 1982):
\[T_1 = \sum_{i=0}^{t} a_i x_i \]
\[T_2 = \sum_{i=0}^{t} m x_i \]
\[T_3 = \sum_{i=0}^{t} m x_i^2 \]
\[V = \frac{n \cdot n_2 (n T_3 - T_2^2)}{n^2 (n - 1)} \]

onde:
\[x_i \] = score que representa o nível de exposição de ordem \(i \);
\[a_i \] = número de casos correspondente ao nível de exposição de ordem \(i \);
\[b_i \] = número de controles correspondente ao nível de exposição de ordem \(i \);
\[m_i \] = \(a_i + b_i \);
\[n_1 \] = total de casos;
\[n_2 \] = total de controles;
\[n \] = total de casos + total de controles.

O teste do qui-quadrado, com um grau de liberdade, é dado por:
\[\chi^2 = \frac{\left(T_1 - \frac{n_1 T_2}{n} \right)^2}{V} \]

3.9.3.4- CÁLCULO DO RISCO ATRIBUÍVEL

O risco atribuível ou fração etiológica, definido como a proporção de todos os casos do grupo estudado atribuíveis à exposição, foi determinado através da expressão (SCHLESSELMAN, 1982):
\[RA = \frac{p c (RR - 1)}{[p c (RR - 1) + 1]} \]
onde p_e corresponde à proporção de indivíduos expostos na população alvo. Na presente pesquisa, na qual o grupo controle equivale a uma amostra da população total de crianças de até cinco anos, p_e pode ser igualado a $\frac{b}{b+d}$.

Para aquelas categorias com múltiplos níveis de exposição, foram empregadas as seguintes expressões (SCHLESSELMAN, 1982):

$$\hat{\lambda}_a = \frac{ab_0 - ba_0}{n_ib_0}$$

$$\text{var}(\hat{\lambda}_a) = \frac{1}{n_1} \left[\frac{a(n_1-a)}{n_1^2} + \frac{a_0(n_1-a_0)}{n_1^2} \left(\frac{b_i^2}{b_0^2} + \frac{b_i}{b_0} + \frac{b_i}{b_0} \right) + \frac{a_0^2}{n_1} \left(\frac{b_i^2}{b_0^2} + \frac{b_i}{b_0} + \frac{b_i}{b_0} \right) + 2 \frac{aa_0}{n_1^2} \frac{b_i}{b_0} \right]$$

onde λ é o risco atribuível, o índice 0 corresponde à categoria de referência, o índice i corresponde à categoria em análise e os demais valores referem-se à TAB. 25. Os limites inferior e superior do intervalo de confiança de λ são, respectivamente:

$$\lambda_{li} = \hat{\lambda}_a - 1,96 \sqrt{\text{var}(\hat{\lambda}_a)}$$

$$\lambda_{ui} = \hat{\lambda}_a + 1,96 \sqrt{\text{var}(\hat{\lambda}_a)}$$

3.9.4- ANÁLISE BIVARIADA

Nessa fase, desenvolveu-se uma análise estratificada, visando à identificação de eventuais confusões e modificações de efeito.

Variáveis confundíveis, segundo ROTHMAN (1986), são aquelas variáveis que:

- são fatores de risco para a doença;
- estão associadas à exposição;
- não representam elo na cadeia causal.
A modificação de efeito, por sua vez, é verificada "quando a incidência da doença na presença de dois ou mais fatores de risco difere da incidência esperada como resultado da combinação de seus efeitos individuais" (SCHLESSELMAN, 1982).

A metodologia empregada para se verificar se uma variável apresenta uma ou ambas as características descritas, por intermédio da análise estratificada, desenvolveu-se através dos passos exibidos na FIG. 29 e 30. No fluxograma, a determinação dos parâmetros referidos é assim realizada:

1. **RRbruto**
 Correspondente ao risco relativo entre a exposição e a doença, calculado conforme equação (3).

2. **RRajust**
 Correspondente ao RR de Mantel-Haenszel, calculado de acordo com a seguinte fórmula (SCHLESSELMAN, 1982):

 \[
 OR_{mn} = \frac{\sum_{i=1}^{k} (a:di / n_i)}{\sum_{i=1}^{k} (b:ci / n_i)}
 \]

 onde:
 - a, b, c e d = células da tabela de contingência 2x2 (TAB. 25);
 - n = número total de observações;
 - i = subgrupo da estratificação em análise;
 - k = número de subgrupos resultantes da estratificação.
FIGURA 29
ANÁLISE BIVARIADA
METODOLOGIA PARA IDENTIFICAÇÃO DE VARIÁVEIS DE CONFUSÃO
FIGURA 30
ANÁLISE BIVARIADA
METODOLOGIA PARA IDENTIFICAÇÃO DE MODIFICAÇÃO DE EFEITO
Teste para modificação de efeito aditiva

Segundo SCHLESSELMAN (1982), a existência de modificação de efeito aditiva entre duas variáveis é comprovada quando o valor de \(S \) é superior a 0, verificado estatisticamente através do teste do qui-quadrado com um grau de liberdade, conforme as seguintes expressões:

\[
S = (a_3/b_3 + a_0/b_0) - (a_1/b_1 + a_2/b_2)
\]
\[
u_i = \text{var}(a_i/b_i) = (a_i/b_i)^2(a_i + b_i)/(a_i b_i)
\]
\[
U = u_0 + u_1 + u_2 + u_3
\]
\[
\chi^2 = S^2/U
\]

onde os coeficientes \(a \) e \(b \) correspondem aos valores das observações para caso e controle, respectivamente, e os índices 0 a 3 significam:

\[
\begin{align*}
0 & \quad \text{grupo de referência;} \\
1 & \quad \text{presença apenas da primeira variável;} \\
2 & \quad \text{presença apenas da segunda variável;} \\
3 & \quad \text{presença conjunta de ambas as variáveis.}
\end{align*}
\]

Teste para modificação de efeito multiplicativa

Segundo KAHN & SEMPOS (1989), a existência de modificação de efeito multiplicativa pode ser avaliada pelo teste de Woolf:

\[
\ln(OR) = \frac{\sum w_i \ln OR_i}{\sum w_i}
\]

\[
\text{var}(\ln OR_i) = \frac{1}{a_i} + \frac{1}{b_i} + \frac{1}{c_i} + \frac{1}{d_i}
\]

\[
w_i = \left[\text{var}(\ln OR_i) \right]^{-1}
\]

\[
\chi^2_{(k-1)gl} = \sum_{i=1}^{k} \frac{(\ln OR_i - \ln OR)^2}{\text{var}(\ln OR_i)}
\]

onde \(i \) é o estrato em análise, \(k \) o número de estratos e \(gl \) o número de graus de liberdade.
3.9.5- ANÁLISE MULTIVARIADA

Como etapa final da análise, empreendeu-se uma análise multivariada, buscando determinar a associação entre exposições e doença, na presença das demais variáveis de exposição e de confusão, além de modificações de efeito.

Para tanto, construiu-se um modelo, baseado na regressão logística, a qual apresenta a seguinte expressão geral (SCHLESSELMAN, 1982):

\[p_x = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p)}} \]

onde:

\[p_x = \] probabilidade de ocorrência da doença;
\[\beta_i = \] In ORi;
\[\beta_0 = \] constante do modelo.

O modelo multivariado, no presente estudo, foi construído a partir de um processo de etapas sucessivas, adaptado de HOSMER & LEMESHOW (1989), através dos seguintes passos:

1. **Seleção preliminar de variáveis para integrar o modelo**
 Adotando-se, nessa seleção, aquelas variáveis cuja associação com a doença apresentasse uma probabilidade inferior a 0,25, na análise univariada, ou que tivessem uma importância relevante, sob o ponto de vista da doença em análise.

2. **Análise das variáveis pré-selecionadas segundo subgrupos explicativos**
 Nesta fase, as diversas variáveis foram distribuídas em oito diferentes subgrupos, de forma a limitar o número de variáveis por modelo. Os subgrupos de variáveis foram assim constituídos:
 - variáveis relativas à estrutura familiar;
 - variáveis sócio-econômicas
 - hábitos higiênicos;
 - abastecimento de água;
 - esgotamento sanitário;
 - manejo dos resíduos sólidos;
• comportamento das águas pluviais;
• presença de vetores.

Definidas as variáveis componentes de cada subgrupo, foram testados oito modelos multivariados distintos.

Eliminação de variáveis dos modelos
Nos diversos modelos multivariados, conforme explicitado no passo anterior, a manutenção de uma variável para o modelo final foi determinada quando apresentasse uma significância inferior a 0,15 ($p < 0,15$). Nesse sentido, tanto foi verificada a estatística de Wald, correspondente ao valor de p relativo à variável no modelo, quanto procedeu-se ao teste de proporção de verossimilhança (“likelihood ratio test”), tendo-se privilegiado o resultado desse último teste para a decisão a ser tomada. O teste permite inferir se o novo modelo é significativamente similar ao anterior, ou seja, se a retirada de uma variável ou de um grupo de variáveis não afeta o poder explicativo do modelo. O referido teste compara o qui-quadrado do valor de G, com o número de graus de liberdade equivalente ao número de categorias eliminadas, sendo G dado por:

$$ G = -2 \ln \left(\frac{\text{verossimilhança sem a variável}}{\text{verossimilhança com a variável}} \right) $$

e o valor da verossimilhança é calculado iterativamente por computação eletrônica.

Uma importante conduta, nessa análise, refere-se ao tamanho da amostra adotada. Na medida em que observações com valores ausentes (“missing values”) de qualquer das variáveis em análise são descartadas, modelos que incluam diferentes grupos de variáveis caracterizam também diferentes tamanhos de amostra. Nesse caso, modelos com amostras de diferentes dimensões deixam de ser comparáveis, segundo o teste de proporção de verossimilhança. Visando a contornar tal ordem de problema, assumiu-se, na análise, amostras de mesma dimensão, através do descarte das observações que acusassem valores ausentes, para quaisquer das variáveis presentes no modelo em teste.
Construção do modelo final
Após estabelecidas as variáveis remanescentes em cada um dos oito modelos, construiu-se um modelo único, composto por todas essas variáveis. Novamente, o procedimento de eliminação das variáveis não significativas, descrito na fase anterior, foi adotado, desta vez para uma significância de 0,05.

Análise da presença de modificação de efeito
Finalmente, foi testada a existência de modificação de efeito, através da introdução, no modelo construído na etapa anterior, de termos correspondentes ao produto entre duas variáveis suspeitas de provocarem modificação de efeito. O teste de significância desses termos - a um nível de significância de 5% - obedeceu à sequência exposta nos passos anteriores.
4- RESULTADOS

4.1- CARACTERIZAÇÃO DA AMOSTRA ESTUDADA

4.1.1- CASOS

A amostra de casos compreendeu 997 crianças. A seção 3.5 apresenta a distribuição temporal dos casos, além de sua distribuição pelas instituições de saúde investigadas.

Quanto à distribuição temporal, objetivando relacionar a incidência de diarreia com eventos meteorológicos, a FIG. 31 exibe o número de casos, no período da coleta, e as temperaturas diárias do ar, nos dois postos mais próximos de Betim - Ibirité e Belo Horizonte. Realizando-se a correlação linear entre casos diários de diarreia e os registros de temperatura do ar para cada posto, independentemente, identificou-se o valor da inclinação da reta estaticamente significativa apenas para Belo Horizonte, embora com um coeficiente de correlação não significativo, descartando portanto a relação entre os dois eventos.

A FIG. 32 relaciona, ao longo do tempo, a ocorrência de chuvas, nos dois postos pluviométricos, com a incidência de diarreia até cinco anos. A correlação linear entre a pluviometria diária e casos de diarreia conduziu a uma relação estaticamente não significativa, rejeitando a existência de relação entre ambos os fatores.
FIGURA 31
DISTRIBUIÇÃO TEMPORAL DO NÚMERO DE CASOS DE DIARRÉIA E DA TEMPERATURA AMBIENTE EM IBIRITÉ E EM BELO HORIZONTE

FIGURA 32
DISTRIBUIÇÃO TEMPORAL DO NÚMERO DE CASOS DE DIARRÉIA E DA PRECIPITAÇÃO DIÁRIA EM IBIRITÉ E EM BELO HORIZONTE
Verificou-se ainda uma perda global de 416 casos, correspondente a 29% do total coletado. Motivou a perda a não localização de endereços, seja pela inexistência da informação na fonte de consulta das instituições de saúde, seja pela impossibilidade de localizá-los em campo. Nesse último caso, ocorreu tanto a desatualização do endereço, quanto a inconsistência da informação, não condizente com os endereços que figuram no campo. Saliente-se que, no caso da inexistência da informação do endereço na instituição de saúde, não há segurança quanto ao local de residência do caso localizar-se na sede urbana do município, portanto superestimando o número real de perdas.

A TAB. 26 apresenta, por instituição de saúde, o percentual de perdas atingido.
<table>
<thead>
<tr>
<th>Instituição de saúde</th>
<th>Número de casos aproveitados</th>
<th>Total de perdas</th>
<th>Perdas/número total de casos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-PB</td>
<td>213</td>
<td>77</td>
<td>27</td>
</tr>
<tr>
<td>02-PB</td>
<td>41</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>03-PB</td>
<td>358</td>
<td>162</td>
<td>31</td>
</tr>
<tr>
<td>04-PB</td>
<td>17</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>05-PB</td>
<td>5</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>06-PB</td>
<td>12</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>07-PB</td>
<td>5</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>08-PB</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>09-PB</td>
<td>25</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>10-PB</td>
<td>24</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>11-PB</td>
<td>14</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>12-PB</td>
<td>6</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>13-PB</td>
<td>41</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>14-PB</td>
<td>10</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>15-PB</td>
<td>22</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>01-PV</td>
<td>28</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>02-PV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>03-PV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>04-PV</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05-PV</td>
<td>54</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>06-PV</td>
<td>4</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>07-PV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>08-PV</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>09-PV</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10-PV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>11-PV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>12-PV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>13-PV</td>
<td>5</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>14-PV</td>
<td>82</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>Não identificado</td>
<td>12</td>
<td>10</td>
<td>45</td>
</tr>
</tbody>
</table>

Total | 997 | 416 | 29 |

Uma comparação entre a proporção de perdas das diversas instituições mostra que há uma diferença estatisticamente significativa entre estas. Foi empregado, na análise, o teste do qui-quadrado, assumindo-se uma proporção esperada de perdas equivalente à perda global da amostra (29,44%). No entanto, a interpretação das diferenças, através da comparação ortogonal, indica que são explicadas apenas pelas instituições 05-PB e 05-PV.
Objetivando verificar a representatividade dos casos, em termos da amostra a partir da qual foram selecionados os controles, desenvolveu-se uma identificação, na listagem geradora dos endereços adotados para controles, dos endereços dos casos. Tal verificação foi realizada em uma subamostra, correspondente aos 100 primeiros casos. Foi localizado 27% dos endereços, em 22% deles localizou-se o arruamento mas não o número da moradia, e nos 51% restantes não foi possível a identificação. O elevado percentual de endereços não localizados pode originar-se de várias causas, sendo uma importante, sem dúvida, a baixa correspondência entre os endereços oficiais e a denominação de logradouros e numeração dos lotes em campo. Uma outra causa é representada pela existência de invasões e de assentamentos clandestinos, não reconhecidos pelos registros oficiais.

A amostra de casos é estatisticamente equivalente a de controles também quanto ao sexo, à pessoa que cuida da criança e à existência de córrego próximo à moradia.

4.1.2- CONTROLES

A TAB. 27 ilustra a distribuição dos 999 controles pelos bairros de Betim, segundo a divisão e a nomenclatura adotados no Cadastro Imobiliário da Prefeitura Municipal, além da proporção que representam do total de imóveis ocupados em cada bairro. O teste de diferenças entre proporções, pelo método do χ^2, revelou não haver diferença estatisticamente significativa entre os bairros, quanto à proporção de moradias selecionadas, com $p = 0,50$.

TABELA 27
NÚMERO DE CONTROLES POR BAIRRO E PROPORÇÃO DO NÚMERO DE RESIDÊNCIAS OCUPADAS

<table>
<thead>
<tr>
<th>BAIRRO</th>
<th>RESIDÊNCIAS OCUPADAS(1)</th>
<th>NÚMERO DE CONTROLES</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRO</td>
<td>816</td>
<td>26</td>
<td>3,19</td>
</tr>
<tr>
<td>NOSSA SENHORA DO CARMO</td>
<td>186</td>
<td>7</td>
<td>3,76</td>
</tr>
<tr>
<td>BRASILÉIA</td>
<td>1006</td>
<td>40</td>
<td>3,98</td>
</tr>
<tr>
<td>BANDEIRANTES</td>
<td>282</td>
<td>9</td>
<td>3,19</td>
</tr>
<tr>
<td>DECAMÃO</td>
<td>212</td>
<td>9</td>
<td>4,25</td>
</tr>
<tr>
<td>SANTA INÉS</td>
<td>441</td>
<td>16</td>
<td>3,63</td>
</tr>
<tr>
<td>ANGOLA</td>
<td>1336</td>
<td>63</td>
<td>4,72</td>
</tr>
<tr>
<td>SALOME</td>
<td>333</td>
<td>17</td>
<td>5,11</td>
</tr>
<tr>
<td>FILADÉLFIA - VILA CASTANHEIRA</td>
<td>538</td>
<td>30</td>
<td>5,58</td>
</tr>
<tr>
<td>MARAJÓARA</td>
<td>390</td>
<td>9</td>
<td>2,31</td>
</tr>
<tr>
<td>VILA RECREIO</td>
<td>630</td>
<td>27</td>
<td>4,29</td>
</tr>
<tr>
<td>VILA TRIÂNGULO</td>
<td>352</td>
<td>12</td>
<td>3,41</td>
</tr>
<tr>
<td>ALVORADA</td>
<td>294</td>
<td>9</td>
<td>3,06</td>
</tr>
<tr>
<td>AMAZONAS</td>
<td>479</td>
<td>18</td>
<td>3,76</td>
</tr>
<tr>
<td>PARQUE BETIM INDUSTRIAL</td>
<td>425</td>
<td>15</td>
<td>3,53</td>
</tr>
<tr>
<td>BOM RETIRO</td>
<td>866</td>
<td>44</td>
<td>5,08</td>
</tr>
<tr>
<td>CHÁCARA SANTO ANTÔNIO</td>
<td>109</td>
<td>5</td>
<td>4,59</td>
</tr>
<tr>
<td>DOM BOSCO</td>
<td>714</td>
<td>30</td>
<td>4,20</td>
</tr>
<tr>
<td>ESPÍRITO SANTO</td>
<td>133</td>
<td>6</td>
<td>4,51</td>
</tr>
<tr>
<td>GRANJA SÃO JOÃO</td>
<td>373</td>
<td>12</td>
<td>3,22</td>
</tr>
<tr>
<td>GUANABARA</td>
<td>512</td>
<td>27</td>
<td>5,27</td>
</tr>
<tr>
<td>INDUSTRIAL SÃO PEDRO</td>
<td>24</td>
<td>2</td>
<td>8,33</td>
</tr>
<tr>
<td>JARDIM DAS ALTEROSAS</td>
<td>1529</td>
<td>53</td>
<td>3,47</td>
</tr>
<tr>
<td>JARDIM BRASILÁ</td>
<td>349</td>
<td>8</td>
<td>2,29</td>
</tr>
<tr>
<td>JARDIM CENTRAL</td>
<td>59</td>
<td>5</td>
<td>8,47</td>
</tr>
<tr>
<td>JARDIM PERLA</td>
<td>121</td>
<td>4</td>
<td>3,31</td>
</tr>
<tr>
<td>JARDIM PETRÓPOLIS</td>
<td>803</td>
<td>37</td>
<td>4,61</td>
</tr>
<tr>
<td>JARDIM SANTA CRUZ</td>
<td>73</td>
<td>1</td>
<td>1,37</td>
</tr>
<tr>
<td>JARDIM TEREZÓPOLIS</td>
<td>326</td>
<td>23</td>
<td>7,06</td>
</tr>
<tr>
<td>LARANJEIRAS</td>
<td>934</td>
<td>49</td>
<td>5,25</td>
</tr>
<tr>
<td>JARDIM DA CIDADE</td>
<td>78</td>
<td>4</td>
<td>5,13</td>
</tr>
<tr>
<td>NITERÓI</td>
<td>412</td>
<td>26</td>
<td>6,31</td>
</tr>
<tr>
<td>NOVA BADEN</td>
<td>332</td>
<td>16</td>
<td>4,82</td>
</tr>
<tr>
<td>NOVO HORIZONTE</td>
<td>345</td>
<td>16</td>
<td>4,64</td>
</tr>
<tr>
<td>PARQUE DAS INDÚSTRIAS</td>
<td>202</td>
<td>8</td>
<td>3,96</td>
</tr>
<tr>
<td>CIDADE VERDE</td>
<td>386</td>
<td>21</td>
<td>5,44</td>
</tr>
<tr>
<td>NOVO GUARUJÁ</td>
<td>59</td>
<td>2</td>
<td>3,39</td>
</tr>
<tr>
<td>RECREIO DOS CAIÇARAS</td>
<td>82</td>
<td>1</td>
<td>1,22</td>
</tr>
<tr>
<td>RIVIERA</td>
<td>68</td>
<td>4</td>
<td>5,88</td>
</tr>
<tr>
<td>SANTA CRUZ</td>
<td>1019</td>
<td>46</td>
<td>4,51</td>
</tr>
<tr>
<td>SANTA FÉ</td>
<td>139</td>
<td>5</td>
<td>3,60</td>
</tr>
<tr>
<td>SANTA LÚCIA</td>
<td>418</td>
<td>11</td>
<td>2,63</td>
</tr>
<tr>
<td>SÃO CAETANO</td>
<td>1045</td>
<td>45</td>
<td>4,31</td>
</tr>
<tr>
<td>BAIRRO</td>
<td>RESIDÊNCIAS OCUPADAS</td>
<td>NÚMERO DE CONTROLES</td>
<td>(%)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>SÃO CRISTÓVÃO</td>
<td>223</td>
<td>11</td>
<td>493</td>
</tr>
<tr>
<td>SÃO MIGUEL</td>
<td>45</td>
<td>2</td>
<td>444</td>
</tr>
<tr>
<td>NOSSA SENHORA DE FÁTIMA</td>
<td>68</td>
<td>3</td>
<td>441</td>
</tr>
<tr>
<td>VILA BOA ESPERANÇA</td>
<td>33</td>
<td>1</td>
<td>303</td>
</tr>
<tr>
<td>VILA DAS FLORES</td>
<td>37</td>
<td>3</td>
<td>811</td>
</tr>
<tr>
<td>VILA INCONFIDÊNCIA</td>
<td>78</td>
<td>3</td>
<td>385</td>
</tr>
<tr>
<td>VILA MONTE LÍBANO</td>
<td>27</td>
<td>1</td>
<td>370</td>
</tr>
<tr>
<td>VILA PRESIDENTE KENNEDY</td>
<td>175</td>
<td>2</td>
<td>114</td>
</tr>
<tr>
<td>VILA N. S. DAS GRAÇAS</td>
<td>270</td>
<td>17</td>
<td>630</td>
</tr>
<tr>
<td>VILA UNIVERSAL</td>
<td>407</td>
<td>15</td>
<td>369</td>
</tr>
<tr>
<td>CRUZEIRO</td>
<td>17</td>
<td>2</td>
<td>1176</td>
</tr>
<tr>
<td>CACHOEIRA</td>
<td>372</td>
<td>11</td>
<td>296</td>
</tr>
<tr>
<td>JARDIM CASA BRANCA</td>
<td>39</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>CHÁCARA BOM REPOUSO</td>
<td>131</td>
<td>5</td>
<td>382</td>
</tr>
<tr>
<td>SAGRADO CORAÇÃO DE JESUS</td>
<td>113</td>
<td>4</td>
<td>354</td>
</tr>
<tr>
<td>INGÁ</td>
<td>133</td>
<td>6</td>
<td>451</td>
</tr>
<tr>
<td>AMARANTE</td>
<td>31</td>
<td>3</td>
<td>968</td>
</tr>
<tr>
<td>CAMPOS ELÍSEOS</td>
<td>49</td>
<td>1</td>
<td>204</td>
</tr>
<tr>
<td>CONJ. OLYMPIA BUENO FRANCO</td>
<td>1030</td>
<td>53</td>
<td>515</td>
</tr>
<tr>
<td>CONJ. HAB. JARDIM PAMPULHA</td>
<td>277</td>
<td>13</td>
<td>469</td>
</tr>
<tr>
<td>CDI - I</td>
<td>325</td>
<td>13</td>
<td>400</td>
</tr>
<tr>
<td>ARVOREDO CLUBE RESIDÊNCIA</td>
<td>288</td>
<td>9</td>
<td>313</td>
</tr>
<tr>
<td>PARQUE FERNÃO DIAS</td>
<td>81</td>
<td>2</td>
<td>247</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23479</td>
<td>999</td>
<td>425</td>
</tr>
</tbody>
</table>

(1) FONTE: Cadastro Imobiliário - regime de utilização residencial - outubro/1993 (Prefeitura Municipal de Betim, 1993)
4.2- DISTRIBUIÇÃO DE FREQUÊNCIAS

A TAB. 42 (ANEXO F) apresenta a distribuição de frequências, entre casos e controles, das diversas variáveis qualitativas coletadas.

4.3- TESTES ESTATÍSTICOS

Na TAB. 42 (ANEXO F) encontra-se o resultado do teste do qui-quadrado para as variáveis qualitativas, identificando-se as categorias significativamente diferentes da amostra, enquanto que a TAB. 28 inclui os testes de diferença entre médias das variáveis quantitativas, através do teste t de Student.

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CASOS</th>
<th>CONTROLES</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>média</td>
<td>n</td>
<td>média</td>
</tr>
<tr>
<td>Idade da mãe (anos)</td>
<td>997</td>
<td>26,99</td>
<td>999</td>
<td>29,21</td>
</tr>
<tr>
<td>Número de crianças < 5 anos que vive na casa</td>
<td>997</td>
<td>1,47</td>
<td>999</td>
<td>1,27</td>
</tr>
<tr>
<td>Idade da criança (anos)</td>
<td>997</td>
<td>1,72</td>
<td>999</td>
<td>2,63</td>
</tr>
<tr>
<td>Idade média das crianças < 5 anos (anos)</td>
<td>997</td>
<td>1,89</td>
<td>999</td>
<td>2,53</td>
</tr>
<tr>
<td>Número de pessoas que vivem na casa</td>
<td>996</td>
<td>4,97</td>
<td>998</td>
<td>4,71</td>
</tr>
<tr>
<td>Número de cômodos</td>
<td>996</td>
<td>4,67</td>
<td>996</td>
<td>5,68</td>
</tr>
<tr>
<td>Morador/cômodo</td>
<td>995</td>
<td>0,95</td>
<td>995</td>
<td>0,75</td>
</tr>
<tr>
<td>Renda (saliários mínimos)</td>
<td>728</td>
<td>2,56</td>
<td>648</td>
<td>3,59</td>
</tr>
<tr>
<td>Renda/morador (s.m./hab)</td>
<td>727</td>
<td>0,61</td>
<td>645</td>
<td>0,85</td>
</tr>
<tr>
<td>Tempo de amamentação (meses)</td>
<td>977</td>
<td>3,84</td>
<td>939</td>
<td>3,95</td>
</tr>
</tbody>
</table>

Pode-se constatar, dos resultados apresentados, que um elevado número de variáveis apresenta diferenças estatisticamente significativas entre os grupos caso e controle.
4.4- ANÁLISE UNIVARIADA

Na TAB. 42 (ANEXO F) são exibidos os valores dos riscos relativos (RR), com seu respectivo intervalo de confiança em um nível de significância de 5%, para cada categoria das potenciais variáveis de exposição e de confusão. A mesma tabela inclui ainda, para aquelas variáveis onde pode-se identificar uma graduação na dose da exposição, o teste de tendências.

A TAB. 29 sintetiza a informação sobre os RR para as principais exposições, transformadas em categóricas dicotômicas e ordenadas segundo o valor da estimativa pontual do RR. A FIG. 33 apresenta, graficamente, o resultado dos testes de tendências com resultado estatisticamente significativo.
<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>COMPARAÇÃO</th>
<th>RR (IC a 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higiene de frutas e verduras</td>
<td>outro x solução desinfetante</td>
<td>4,75 (2,84 - 8,05)</td>
</tr>
<tr>
<td>Existência de geladeira</td>
<td>não x sim</td>
<td>3,39 (2,71 - 4,24)</td>
</tr>
<tr>
<td>Existência de reservatório</td>
<td>não x sim</td>
<td>3,29 (2,62 - 4,13)</td>
</tr>
<tr>
<td>Extração de água do poço</td>
<td>manual x bomba</td>
<td>3,00 (0,74 - 13,16)</td>
</tr>
<tr>
<td>Disposição fezes das fraldas</td>
<td>outro x vaso/fossa</td>
<td>2,94 (2,19 - 3,94)</td>
</tr>
<tr>
<td>Origem da água</td>
<td>outra origem x rede pública</td>
<td>2,78 (1,51 - 5,18)</td>
</tr>
<tr>
<td>Esgoto superficial na rua</td>
<td>sim x não</td>
<td>2,74 (2,27 - 3,32)</td>
</tr>
<tr>
<td>Acondicionamento do lixo</td>
<td>outro x saco de lixo</td>
<td>2,51 (2,05 - 3,06)</td>
</tr>
<tr>
<td>Higiene mãos após defecar</td>
<td>nunca/peq. freq. x freqüente</td>
<td>2,34 (1,84 - 3,06)</td>
</tr>
<tr>
<td>Existência de banheiro</td>
<td>(não ou externo) x (1 ou mais)</td>
<td>2,15 (1,69 - 2,73)</td>
</tr>
<tr>
<td>Inundação do lote</td>
<td>sim x não</td>
<td>2,11 (1,75 - 2,56)</td>
</tr>
<tr>
<td>Presença de ratos</td>
<td>>1 vez/semestre x <1vez/ano</td>
<td>2,08 (1,72 - 2,52)</td>
</tr>
<tr>
<td>Disposição do lixo</td>
<td>outro x coleta pública</td>
<td>1,99 (1,61 - 2,48)</td>
</tr>
<tr>
<td>Disposição dos esgotos</td>
<td>outro x rede</td>
<td>1,97 (1,63 - 2,37)</td>
</tr>
<tr>
<td>Higiene mãos antes alimentar</td>
<td>nunca/peq. freq. x freqüente</td>
<td>1,92 (1,48 - 2,50)</td>
</tr>
<tr>
<td>Presença de baratas</td>
<td>>3 meses/ano x <1 mês/ano</td>
<td>1,74 (1,45 - 2,09)</td>
</tr>
<tr>
<td>Queixa quanto à água do poço</td>
<td>sim x não</td>
<td>1,67 (0,35 - 7,22)</td>
</tr>
<tr>
<td>Coleta de lixo</td>
<td>≤2col./sem. x ≥ 3 col./semana</td>
<td>1,66 (1,30 - 2,11)</td>
</tr>
<tr>
<td>Presença de moscas</td>
<td>>3 meses/ano x <1 mês/ano</td>
<td>1,59 (1,29 - 1,96)</td>
</tr>
<tr>
<td>Preparo da água para bebida</td>
<td>não x sim</td>
<td>1,55 (1,33 - 2,14)</td>
</tr>
<tr>
<td>Cobertura do reservatório</td>
<td>não x sim</td>
<td>1,52 (1,00 - 2,31)</td>
</tr>
<tr>
<td>Presença de mosquitos</td>
<td>todo o tempo x <6 meses/ano</td>
<td>1,48 (1,23 - 1,78)</td>
</tr>
<tr>
<td>Empoçoamento no lote</td>
<td>sim x não</td>
<td>1,46 (1,19 - 1,80)</td>
</tr>
<tr>
<td>Emprego de clorador no poço</td>
<td>não x sim</td>
<td>1,29 (0,18 - 6,94)</td>
</tr>
<tr>
<td>Falta de água da rede pública</td>
<td>sim x não</td>
<td>1,24 (1,03 - 1,49)</td>
</tr>
<tr>
<td>Contato com água do córrego</td>
<td>sim x não</td>
<td>1,22 (0,54 - 2,79)</td>
</tr>
<tr>
<td>Limpeza do reservatório</td>
<td>nunca x alguma vez</td>
<td>1,19 (0,88 - 1,61)</td>
</tr>
<tr>
<td>Existência de córrego próximo</td>
<td>sim x não</td>
<td>1,14 (0,94 - 1,37)</td>
</tr>
<tr>
<td>Obstrução da rede de esgotos</td>
<td>sim x não</td>
<td>1,11 (0,75 - 1,65)</td>
</tr>
<tr>
<td>Queixa quanto à água da rede</td>
<td>sim x não</td>
<td>1,03 (0,66 - 1,61)</td>
</tr>
<tr>
<td>Cobertura do poço raso</td>
<td>não/inadequada x adequada</td>
<td>0,96 (0,24 - 4,36)</td>
</tr>
<tr>
<td>Higiene de frutas e verduras</td>
<td>não x sim</td>
<td>0,64 (0,30 - 1,36)</td>
</tr>
</tbody>
</table>
FIGURA 33
REPRESENTAÇÃO GRÁFICA DOS TESTES DE TENDÊNCIA DOS RISCOS RELATIVOS
FIGURA 33 (continuação)
REPRESENTAÇÃO GRÁFICA DOS TESTES DE TENDÊNCIA DOS RISCOS RELATIVOS
4.5- **ANÁLISE BIVARIADA**

Dado o elevado número de combinações possíveis entre variáveis, desenvolveu-se a análise estratificada para os pares de variáveis nos quais algum efeito de confusão ou de modificação de efeito pudesse ser esperado, em função do significado da variável e de registros na literatura. Nesse caso, objetivando reduzir o número de categorias, todas as variáveis analisadas foram transformadas em dicotômicas, procurando-se definir o ponto de corte de tal maneira a evitar baixas frequências nas duas categorias.

A TAB. 43 (ANEXO G) apresenta as análises realizadas. Observam-se as seguintes evidências:

CONFUSÕES:

- instrução da mãe x origem da água;
- instrução da mãe x disposição de esgotos;
- instrução da mãe x existência de banheiro;
- posse de televisor x origem da água;
- posse de televisor x disposição de esgotos;
- posse de televisor x disposição de lixo;
- posse de televisor x existência de banheiro;
- existência de cozinha x origem da água;
- existência de cozinha x disposição de esgotos;
- existência de cozinha x disposição de lixo;
- existência de cozinha x higiene após defecar;
- morador/cômodo x origem da água;
- morador/cômodo x disposição de esgotos;
- morador/cômodo x disposição de lixo;
- morador/cômodo x higiene após defecar;
- disposição de esgotos x origem da água;
- disposição de esgotos x disposição de lixo;
- disposição de esgotos x presença de moscas;
- disposição de esgotos x presença de mosquitos.
MODIFICAÇÃO DE EFEITO ADITIVA:

- núm. de crianças < 5 anos x disposição de lixo;
- instrução da mãe x empoeamento de água;
- posse de televisor x existência de banheiro;
- morador/cômodo x higiene após defecar;
- disposição de esgotos x presença de moscas;
- disposição de esgotos x presença de ratos.

MODIFICAÇÃO DE EFEITO MULTIPLICATIVA:

- disposição de esgotos x presença de baratas;
- disposição de lixo x presença de baratas.

4.6- ANÁLISE MULTIVARIADA

Conforme descrito na seção 3.9.5, a análise multivariada obedeceu a uma sequência metodológica pré-estabelecida, cuja técnica básica consiste no descarte sucessivo das variáveis não significativas, em cada etapa de análise. Na TAB. 30, são representadas as diversas variáveis analisadas e o respectivo comportamento em cada fase da análise. No ANEXO H (TAB. 44), são descritas as categorias analisadas para cada variável, enquanto que no ANEXO I estão incluídos os resultados dos diversos modelos simulados, segundo a planilha de saída do "software" empregado - MULTLR. As FIG. 34 e 35 apresentam os diversos parâmetros do modelo final, respectivamente sem e com os fatores de modificação de efeito. As modificações de efeito multiplicativas identificadas no modelo foram:

- escoamento de esgotos x acondicionamento do lixo;
- limpeza da caixa d'água/ armazenamento da água x presença de baratas;
- presença de mosquitos x presença de baratas.
Tabela 30
ANÁLISE MULTIVARIADA

VARIÁVEIS SIGNIFICATIVAS EM CADA ETAPA DE ANÁLISE

<table>
<thead>
<tr>
<th>SUBGRUPO</th>
<th>VARIÁVEL</th>
<th>SIGNIFICÂNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ANÁLISE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNIVARIADA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p<25%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTRUTURA</td>
<td>Residência da mãe</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Idade da mãe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residência do pai</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Número de crianças na casa</td>
<td>*</td>
</tr>
<tr>
<td>FAMILIAR</td>
<td>Idade criança</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Ordem de nascimento</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Idade média das crianças</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Sexo</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Amamentação</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local onde fica a criança</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Instrução mãe</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Instrução pai</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Religião mãe</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Religião pai</td>
<td>*</td>
</tr>
<tr>
<td>NÍVEL</td>
<td>Propriedade casa</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Número de moradores/comodo</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Existência de banheiro</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Existência de cozinha</td>
<td>*</td>
</tr>
<tr>
<td>SÓCIO-ECONÔMICO</td>
<td>Posse de TV</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Posse de geladeira</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Ocupação mãe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocupação pai</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renda (s.m. "per capita")</td>
<td>*</td>
</tr>
<tr>
<td>HÁBITOS</td>
<td>Preparo da água</td>
<td>*</td>
</tr>
<tr>
<td>HIGIIÊNÍCOS</td>
<td>Preparo alimentos</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Higiene antes alimentar</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Higiene após defecar</td>
<td>*</td>
</tr>
<tr>
<td>ABASTECIMENTO</td>
<td>Origem da água</td>
<td>*</td>
</tr>
<tr>
<td>DE ÁGUA</td>
<td>Intermittência</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Queixa sobre água</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consumo "per capita"</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Existência caixa</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Material da caixa</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Limpeza da caixa</td>
<td>*</td>
</tr>
<tr>
<td>ESGOTAMENTO</td>
<td>Disposição esgoto</td>
<td>*</td>
</tr>
<tr>
<td>SANITÁRIO</td>
<td>Obstrução rede</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Existência córrego</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Esgoto na rua</td>
<td>*</td>
</tr>
<tr>
<td>SUBGRUPO</td>
<td>VARIÁVEL</td>
<td>SIGNIFICÂNCIA</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANÁLISE UNIVA-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIADA (p<25%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subgroup (p<15%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mod. final (p<5%)</td>
</tr>
<tr>
<td>DISPOSIÇÃO</td>
<td>Acondicionamento do lixo</td>
<td>*</td>
</tr>
<tr>
<td>DE LIXO</td>
<td>Disposição lixo</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Freqüência coleta</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Lançamento fezes das fraídias</td>
<td>*</td>
</tr>
<tr>
<td>ÁGUA DE CHUVA</td>
<td>Inundação</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Empoçamento</td>
<td>*</td>
</tr>
<tr>
<td>VETORES</td>
<td>Moscas</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Mosquitos</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Baratas</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Ratos</td>
<td>*</td>
</tr>
</tbody>
</table>

* variável estatisticamente significativa ao nível limite da etapa de análise.
<table>
<thead>
<tr>
<th>OUTPOINT</th>
<th>TERM</th>
<th>ORI.</th>
<th>A.R.</th>
<th>2-SCONE</th>
<th>D-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CRAM</td>
<td>0.4901</td>
<td>0.1074</td>
<td>4.2596</td>
<td>0.0000</td>
<td>1.581</td>
<td>1.280</td>
<td>1.952</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Donal</td>
<td>0.5617</td>
<td>0.0589</td>
<td>5.3326</td>
<td>0.0000</td>
<td>1.813</td>
<td>1.693</td>
<td>2.015</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>LANGTE (2)</td>
<td>0.4095</td>
<td>0.1905</td>
<td>2.1443</td>
<td>0.0320</td>
<td>1.504</td>
<td>1.314</td>
<td>1.694</td>
<td>BASELINE</td>
</tr>
<tr>
<td>8.50</td>
<td>LANGTE (3)</td>
<td>0.4902</td>
<td>0.2556</td>
<td>3.2084</td>
<td>0.0013</td>
<td>1.647</td>
<td>1.212</td>
<td>2.235</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>LDLPAKE (2)</td>
<td>0.5704</td>
<td>0.3108</td>
<td>0.3467</td>
<td>0.2072</td>
<td>1.931</td>
<td>0.995</td>
<td>1.077</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>LDLPAKE (3)</td>
<td>0.6690</td>
<td>0.1370</td>
<td>0.3870</td>
<td>0.6195</td>
<td>1.370</td>
<td>0.818</td>
<td>1.400</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>LDLPAKE (4)</td>
<td>-0.6661</td>
<td>0.2351</td>
<td>-0.1513</td>
<td>0.6723</td>
<td>0.486</td>
<td>0.394</td>
<td>0.594</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>LDLPAKE (5)</td>
<td>0.6470</td>
<td>0.3740</td>
<td>1.9969</td>
<td>0.0458</td>
<td>1.919</td>
<td>1.012</td>
<td>3.004</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>LDLPAKE (6)</td>
<td>0.6465</td>
<td>0.1703</td>
<td>3.7952</td>
<td>0.0001</td>
<td>1.808</td>
<td>1.367</td>
<td>2.505</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>KOGA (2)</td>
<td>0.8669</td>
<td>0.1224</td>
<td>7.0720</td>
<td>0.0000</td>
<td>2.380</td>
<td>1.971</td>
<td>2.805</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>KOGA (3)</td>
<td>0.4401</td>
<td>0.1775</td>
<td>3.5130</td>
<td>0.0004</td>
<td>3.195</td>
<td>2.129</td>
<td>5.100</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>ACID (2)</td>
<td>0.9780</td>
<td>0.1216</td>
<td>5.3803</td>
<td>0.0000</td>
<td>1.997</td>
<td>1.553</td>
<td>2.552</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>FREQUENC (2)</td>
<td>0.3279</td>
<td>0.1919</td>
<td>1.8619</td>
<td>0.0624</td>
<td>1.327</td>
<td>0.936</td>
<td>1.787</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>FREQUENC (3)</td>
<td>-0.1789</td>
<td>0.1898</td>
<td>-0.9471</td>
<td>0.3436</td>
<td>0.436</td>
<td>0.257</td>
<td>0.711</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>FREQUENC (4)</td>
<td>0.4778</td>
<td>0.3923</td>
<td>2.8162</td>
<td>0.0045</td>
<td>2.320</td>
<td>2.330</td>
<td>2.362</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>DMO (2)</td>
<td>0.3275</td>
<td>0.1115</td>
<td>2.7944</td>
<td>0.0672</td>
<td>1.987</td>
<td>1.093</td>
<td>1.753</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.50</td>
<td>DMO (3)</td>
<td>0.3515</td>
<td>0.1202</td>
<td>2.8070</td>
<td>0.0097</td>
<td>3.585</td>
<td>1.079</td>
<td>1.693</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.00</td>
<td>RELMAE (2)</td>
<td>0.8478</td>
<td>0.3946</td>
<td>2.7021</td>
<td>0.0077</td>
<td>2.950</td>
<td>1.179</td>
<td>5.046</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>RELMAE (3)</td>
<td>0.3597</td>
<td>0.1464</td>
<td>2.7269</td>
<td>0.0532</td>
<td>1.405</td>
<td>1.040</td>
<td>1.983</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>RELMAE (4)</td>
<td>0.3382</td>
<td>0.1167</td>
<td>2.9048</td>
<td>0.0037</td>
<td>2.343</td>
<td>1.137</td>
<td>1.784</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1200.7189
LOG-LIKELIHOOD (CYCLE 5) = -926.9047

$-2 \times$ MAXIMIZED LOG-LIKELIHOOD = 1482.1995

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>0.0900</td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD)........... UNCONDITIONAL
TOILEANCE........................... 0.0000010000
CONVERGENCE...................... 0.0001000000
ITERATIONS................. 40
CONFIDENCE LEVEL............. 95%
RECORDS IN ANALYSIS......... 1,735*
ERRORS OR WARNING MESSAGES .. NO...
TIME (SECONDS)............... 13.470

FIGURA 34
MODELO LOGÍSTICO FINAL
SEM FATORES DE MODIFICAÇÃO DE EFEITO
Table: Logistic Regression Results

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>CHAR1</td>
<td>0.4730</td>
<td>0.1085</td>
<td>4.3603</td>
<td>0.0000</td>
<td>1.605</td>
<td>1.317</td>
<td>1.905</td>
<td>BASELINE</td>
</tr>
<tr>
<td>SINGLE</td>
<td>CHAR2</td>
<td>0.6038</td>
<td>0.0648</td>
<td>4.9065</td>
<td>0.0000</td>
<td>1.821</td>
<td>1.639</td>
<td>2.022</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>LANCHE (2)</td>
<td>0.3705</td>
<td>0.1841</td>
<td>1.9833</td>
<td>0.0473</td>
<td>1.448</td>
<td>0.930</td>
<td>2.150</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>LANCHE (3)</td>
<td>0.4882</td>
<td>0.1575</td>
<td>3.0998</td>
<td>0.0019</td>
<td>1.749</td>
<td>1.579</td>
<td>2.168</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>LANCHE2 (2)</td>
<td>-1.0609</td>
<td>0.5605</td>
<td>-1.8924</td>
<td>0.0584</td>
<td>0.346</td>
<td>0.115</td>
<td>0.939</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCHE2 (3)</td>
<td>0.1740</td>
<td>0.1997</td>
<td>0.8799</td>
<td>0.3849</td>
<td>1.128</td>
<td>0.807</td>
<td>1.578</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>LANCHE2 (4)</td>
<td>-0.6565</td>
<td>0.7331</td>
<td>-0.8855</td>
<td>0.3705</td>
<td>0.518</td>
<td>0.183</td>
<td>1.383</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>LANCHE2 (5)</td>
<td>0.4814</td>
<td>0.2217</td>
<td>0.9721</td>
<td>0.3282</td>
<td>1.610</td>
<td>0.715</td>
<td>4.989</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>LANCHE2 (6)</td>
<td>0.3606</td>
<td>0.2512</td>
<td>1.4355</td>
<td>0.1512</td>
<td>1.344</td>
<td>0.877</td>
<td>2.347</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.50</td>
<td>ERRO1 (2)</td>
<td>0.3646</td>
<td>0.1971</td>
<td>1.8515</td>
<td>0.0650</td>
<td>1.446</td>
<td>0.900</td>
<td>2.662</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>ERRO1 (3)</td>
<td>0.4407</td>
<td>0.2193</td>
<td>1.8940</td>
<td>0.0586</td>
<td>1.542</td>
<td>1.122</td>
<td>2.032</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>ACORD (2)</td>
<td>0.3743</td>
<td>0.1927</td>
<td>1.9706</td>
<td>0.0485</td>
<td>1.460</td>
<td>1.062</td>
<td>1.869</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>PRELUX2 (2)</td>
<td>0.2701</td>
<td>0.1837</td>
<td>1.4895</td>
<td>0.0767</td>
<td>1.321</td>
<td>0.977</td>
<td>1.796</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>PRELUX2 (3)</td>
<td>0.2452</td>
<td>0.1926</td>
<td>1.2726</td>
<td>0.2034</td>
<td>1.076</td>
<td>0.539</td>
<td>2.147</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>PRELUX2 (4)</td>
<td>0.4471</td>
<td>0.1933</td>
<td>2.3159</td>
<td>0.0206</td>
<td>1.549</td>
<td>1.071</td>
<td>2.285</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.50</td>
<td>PRELUX2 (5)</td>
<td>0.6243</td>
<td>0.1931</td>
<td>3.2753</td>
<td>0.0056</td>
<td>1.920</td>
<td>1.090</td>
<td>3.370</td>
<td>BASELINE</td>
</tr>
<tr>
<td>9.00</td>
<td>PRELUX2 (6)</td>
<td>0.6583</td>
<td>0.1746</td>
<td>3.8008</td>
<td>0.0047</td>
<td>2.040</td>
<td>1.214</td>
<td>3.515</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>CELI (2)</td>
<td>0.3237</td>
<td>0.1520</td>
<td>2.1398</td>
<td>0.0632</td>
<td>1.392</td>
<td>1.016</td>
<td>1.882</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>PREPALLI (2)</td>
<td>1.0249</td>
<td>0.2944</td>
<td>3.4817</td>
<td>0.0005</td>
<td>2.797</td>
<td>1.890</td>
<td>4.683</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

Likelihood Ratio Test

- **Log-Likelihood (Cycle 1):** -1100.7180
- **Log-Likelihood (Cycle 5):** -921.0611

- **Finalized Log-Likelihood:** -843.9223

Criteria and Model Building Characteristics

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis (Likelihood)</td>
<td>UNCONDITIONAL</td>
</tr>
<tr>
<td>Tolerance</td>
<td>0.0000010000</td>
</tr>
<tr>
<td>Convergence</td>
<td>0.0000100000</td>
</tr>
<tr>
<td>Iterations</td>
<td>40</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>95%</td>
</tr>
<tr>
<td>Records in Analysis</td>
<td>1735</td>
</tr>
<tr>
<td>Error on Warning Messages</td>
<td>MORE</td>
</tr>
<tr>
<td>Time (Records)</td>
<td>71.890</td>
</tr>
</tbody>
</table>

FIGURA 35

MODELO LOGISTICO FINAL

COM FATORES DE MODIFICAÇÃO DE EFEITO
4.7- RISCO ATRIBUÍVEL

Os valores do risco atribuível para as diversas variáveis de exposição são apresentados no ANEXO J.

Pode-se observar que algumas variáveis se destacam pelo elevado valor do risco atribuível, sendo uma indicação de sua importância em termos de saúde pública. Ou seja, intervenções no sentido de superar os riscos devidos à variável implicariam em um elevado impacto sobre a redução da incidência de diarreia. As exposições que demonstram valores de RA superiores a 20% são:

- Preparo de frutas e verduras (lavar x desinfetar): 75,34%.
- Instrução do pai (1º grau incompleto x 2º grau completo ou mais): 48,28%.
- Instrução da mãe (1º grau incompleto x 2º grau completo ou mais): 46,09%.
- Instrução da pessoa que cuida da criança (1º grau incompleto x 2º grau completo ou mais): 42,38%.
- Freqüência de coleta de lixo (três vezes por semana x diária): 42,23%.
- Existência de banheiro (um interno x mais de um interno): 38,83%.
- Acondicionamento do lixo (sacola de plástico x saco de lixo): 35,70%.
- Esgoto escorrendo na rua: 33,79%.
- Presença de moscas (3 meses/ano x < 6 meses/ano): 29,15%.
- Presença de baratas (3 meses/ano x < 6 meses/ano): 27,02%.
- Posse de geladeira: 26,19%.
- Presença de ratos (mais de 1 vez/semestre x menos de 1 vez/ano): 23,33%.
- Disposição de esgotos (algum tipo de fossa x rede): 21,32%.
- Presença de mosquitos (todo o tempo x < 6 meses/ano): 21,24%.
- Ocorrência de inundações (mais de 5 vezes/ano x não): 20,94%.
4.8- ANÁLISE ESPECÍFICA SOBRE O CONSUMO DE ÁGUA

Na pesquisa realizada sobre o consumo familiar de água do sistema público, dificuldades manifestaram-se quanto à ausência de hidrometração ou à falta de identificação de endereços na listagem de micromedição da COPASA-MG, mesmo com as considerações assumidas visando à minimização das perdas (seção 3.7).

Os dados coletados apresentaram a seguinte distribuição:

TABELA 31
DISTRIBUIÇÃO DA AMOSTRA DE CASOS E CONTROLES, SEGUNDO A FORMA DOS DADOS DA COPASA-MG SOBRE CONSUMO DE ÁGUA

<table>
<thead>
<tr>
<th>SITUAÇÃO</th>
<th>CASOS</th>
<th>CONTROLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Dado coletado</td>
<td>401</td>
<td>40,22</td>
</tr>
<tr>
<td>Sem hidrometração</td>
<td>307</td>
<td>30,49</td>
</tr>
<tr>
<td>Logradouro não incluído</td>
<td>32</td>
<td>3,21</td>
</tr>
<tr>
<td>Numeração da rua s/usuário</td>
<td>182</td>
<td>18,25</td>
</tr>
<tr>
<td>Diferença dos consumos > 30%</td>
<td>75</td>
<td>7,52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>997</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Para a análise epidemiológica dessa variável, adotou-se o valor do consumo "per capita" médio familiar, em litros por habitante por dia. Uma simulação realizada, para contornar a ausência de hidrometração consistiu em se atribuir os valores de 7, 10 e 15 m³, para o consumo mensal da economia, objetivando afetar a sensibilidade desse dado. Uma outra consideração assumida foi a exclusão das observações com consumo "per capita" inferior a 30, os quais sugerem distorções nos valores do consumo, como família ausente da casa no mês de medição. O teste t, comparando a média do consumo "per capita" entre os grupos caso e controle, está exibido na TAB. 32. Valores de p inferiores a 0,05, naquela tabela, correspondem a situações onde as médias do consumo "per capita" de casos e de controles são significativamente diferentes, a um nível de 5%.
TABELA 32
CONSUMO "PER CAPITA"
RESULTADO DO TESTE t DE STUDENT DE COMPARAÇÃO ENTRE MÉDIAS

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CASOS</th>
<th>CONTROLES</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n média</td>
<td>n média</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>l/hab.dia</td>
<td>l/hab.dia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo bruto</td>
<td>401 148,56</td>
<td>534 145,08</td>
<td>0,43</td>
<td>0,667 (NS)</td>
</tr>
<tr>
<td>Não hidrometrados = 7 m³</td>
<td>707 106,88</td>
<td>682 125,54</td>
<td>-3,29</td>
<td>0,001 (S)</td>
</tr>
<tr>
<td>Não hidrometrados = 10 m³</td>
<td>707 116,75</td>
<td>682 130,75</td>
<td>-2,54</td>
<td>0,011 (S)</td>
</tr>
<tr>
<td>Não hidrometrados = 15 m³</td>
<td>707 133,16</td>
<td>682 139,40</td>
<td>-1,16</td>
<td>0,245 (NS)</td>
</tr>
<tr>
<td>Exclusão qpc < 30 l/hab.dia</td>
<td>384 154,59</td>
<td>519 148,79</td>
<td>0,71</td>
<td>0,480 (NS)</td>
</tr>
<tr>
<td>Exclusão + (n. hidrom. = 7 m³)</td>
<td>658 113,27</td>
<td>650 130,64</td>
<td>-2,95</td>
<td>0,003 (NS)</td>
</tr>
<tr>
<td>Exclusão + (n. hidrom. = 10 m³)</td>
<td>686 119,85</td>
<td>666 133,47</td>
<td>-2,44</td>
<td>0,015 (NS)</td>
</tr>
<tr>
<td>Exclusão + (n. hidrom. = 15 m³)</td>
<td>690 136,14</td>
<td>667 142,15</td>
<td>-1,12</td>
<td>0,265 (NS)</td>
</tr>
</tbody>
</table>

S= significativo a um nível de 5%;
NS= não significativo a um nível de 5%;

Realizou-se, ainda, uma análise de tendência, agrupando os valores do consumo "per capita" por faixas de consumo e estratificando-se a amostra por condição sócio-econômica. Para a estratificação, empregou-se a variável "posse de televisor", arbitrando-se como nível sócio-econômico inferior a moradia sem televisor ou com aparelho em preto e branco e nível sócio-econômico superior as famílias com um ou mais aparelhos, sendo pelo menos um em cores. A TAB. 33 apresenta a análise desenvolvida. Valores de p inferiores a 0,05, naquela tabela, correspondem a situações onde se verifica uma tendência estatisticamente significativa, a um nível de 5%, de que o risco relativo para diarreia é decrescente, à medida que se incrementa o consumo "per capita".
Tabela 33
CONSUMO "PER CAPITA" - ANÁLISE DE TENDÊNCIA COM ESTRATIFICAÇÃO POR NÍVEL SÓCIO-ECONÔMICO

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>NÍVEL SÓCIO-ECONÔMICO</th>
<th>RR POR FAIXA DE CONSUMO (l/hab.dia)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[score]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - 50</td>
<td>50 -100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[25]</td>
<td>[75]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 - 150</td>
<td>150 - 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[125]</td>
<td>[175]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo bruto</td>
<td>inferior</td>
<td>1,48</td>
<td>0,162</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>1,41</td>
<td>0,770</td>
</tr>
<tr>
<td>Não hidrom.= 7 m³</td>
<td>inferior</td>
<td>2,49</td>
<td>0,000*</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>2,20</td>
<td>0,004*</td>
</tr>
<tr>
<td>Não hidrom.= 10m³</td>
<td>inferior</td>
<td>2,40</td>
<td>0,000*</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>1,49</td>
<td>0,080</td>
</tr>
<tr>
<td>Não hidrom.= 15m³</td>
<td>inferior</td>
<td>1,41</td>
<td>0,099</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>1,58</td>
<td>0,786</td>
</tr>
<tr>
<td>Excl. qpc <30</td>
<td>inferior</td>
<td>1,74</td>
<td>0,181</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>1,35</td>
<td>0,503</td>
</tr>
<tr>
<td>Excl.+(n.hidrom.=7)</td>
<td>inferior</td>
<td>2,75</td>
<td>0,000*</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>2,56</td>
<td>0,006*</td>
</tr>
<tr>
<td>Excl.+(n.hidr.=10)</td>
<td>inferior</td>
<td>2,78</td>
<td>0,000*</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>1,34</td>
<td>0,137</td>
</tr>
<tr>
<td>Excl.+(n.hidr.=15)</td>
<td>inferior</td>
<td>1,69</td>
<td>0,063</td>
</tr>
<tr>
<td></td>
<td>superior</td>
<td>1,63</td>
<td>0,925</td>
</tr>
</tbody>
</table>

* tendência significativa pelo teste do χ^2.

4.9- TESTE DE CONFIABILIDADE

O ANEXO K inclui os resultados do teste de confiabilidade para cada variável, com os respectivos k e a sua probabilidade p de que seja estatisticamente significativa a concordância entre teste e entrevista. Ao se processar a análise estatística do teste, observou-se que a estatística "kappa" conduz a distorções em alguns resultados, sobretudo quando apenas uma das células da diagonal principal da tabela de comparação concentra resultados. Em vista disso, assinalou-se, na referida tabela, resultados desconsiderados na interpretação do teste.
Segundo LILIENTH & STOLLEY (1994), os valores de k podem ser interpretados de acordo com a seguinte relação:

- $0,80 < k < 1,00$: concordância quase perfeita;
- $0,60 < k < 0,79$: concordância substancial;
- $0,40 < k < 0,59$: concordância moderada;
- $0,20 < k < 0,39$: concordância regular;
- $0 < k < 0,19$: concordância pobre;
- $k < 0$: sem concordância.

Sumariza-se, dessa forma, na TAB. 34, o nível de concordância demonstrado pelas diversas variáveis.

TABELA 34

TESTE DE CONFIABILIDADE - NÍVEIS DE CONCORDÂNCIA PARA TESTES COM O MESMO E COM OUTRO ENTREVISTADOR

<table>
<thead>
<tr>
<th>NÍVEL DE CONCORDÂNCIA(1)</th>
<th>NÚMERO DE VARIÁVEIS (%)</th>
<th>Outro entrevistador</th>
<th>Mesmo entrevistador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caso</td>
<td>Controle</td>
<td>Média</td>
</tr>
<tr>
<td>Quase perfeita</td>
<td>16</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Substancial</td>
<td>29</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>Moderada</td>
<td>27</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Regular</td>
<td>23</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Pobre</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Sem concordância</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Substancial-quase perfeita</td>
<td>45</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>S/ concordância -moderada</td>
<td>55</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

(1) enquadramento dos valores de "kappa", segundo critério apresentado por LILIENTH & STOLLEY (1994).

4.10- DETERMINAÇÃO DO "ODDS RATIO"

Na presente pesquisa, 28 controles foram posteriormente selecionados como casos, determinando uma incidência de 0,028 casos de diarreia por criança de até cinco anos, no período de 3,5 meses, o que, assumindo a simplificação de uma evolução linear, corresponderia a 0,086 episódios/criança.anao. A exclusão, da amostra de controles, dessas 28 observações, permite simular um estudo caso-controle tradicional, onde os controles incluem apenas os não casos. Objetivando, a partir
dessa propriedade do método caso-coorte, comparar os valores do risco relativo com os dos "odds ratio" correspondentes a um estudo caso-controle tradicional, cuja amostra de controles tivesse a mencionada composição, são exibidos na TAB. 35 ambos os valores para as diversas variáveis.
<table>
<thead>
<tr>
<th>EXPOSIÇÃO</th>
<th>CATEGORIA</th>
<th>Caso</th>
<th>Controle</th>
<th>OR</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origem da água</td>
<td>- outra fonte</td>
<td>43</td>
<td>16</td>
<td>2,70</td>
<td>2,78</td>
</tr>
<tr>
<td></td>
<td>- rede pública</td>
<td>948</td>
<td>952</td>
<td>(1,46-5,03)</td>
<td>(1,51-5,18)</td>
</tr>
<tr>
<td>Falta de água</td>
<td>- sim</td>
<td>467</td>
<td>415</td>
<td>1,24</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td>- nunca</td>
<td>478</td>
<td>526</td>
<td>(1,03-1,49)</td>
<td>(1,03-1,49)</td>
</tr>
<tr>
<td>Preparo da água</td>
<td>- não</td>
<td>216</td>
<td>147</td>
<td>1,51</td>
<td>1,54</td>
</tr>
<tr>
<td></td>
<td>- sim</td>
<td>1765</td>
<td>1816</td>
<td>(1,21-1,89)</td>
<td>(1,23-1,92)</td>
</tr>
<tr>
<td>Preparo de alimentos</td>
<td>- outro</td>
<td>1874</td>
<td>1713</td>
<td>4,70</td>
<td>4,72</td>
</tr>
<tr>
<td></td>
<td>- desinfeção</td>
<td>40</td>
<td>172</td>
<td>(3,27-6,78)</td>
<td>(3,29-6,80)</td>
</tr>
<tr>
<td>Existência do reservatório</td>
<td>- não</td>
<td>696</td>
<td>277</td>
<td>3,26</td>
<td>3,26</td>
</tr>
<tr>
<td></td>
<td>- sim</td>
<td>1289</td>
<td>1673</td>
<td>(2,78-3,83)</td>
<td>(2,78-3,82)</td>
</tr>
<tr>
<td>Proteção do reservatório</td>
<td>- sem</td>
<td>110</td>
<td>95</td>
<td>1,51</td>
<td>1,51</td>
</tr>
<tr>
<td></td>
<td>- com cobertura</td>
<td>1178</td>
<td>1535</td>
<td>(1,12-2,03)</td>
<td>(1,13-2,03)</td>
</tr>
<tr>
<td>Freqüência de limpeza</td>
<td>- nunca</td>
<td>208</td>
<td>220</td>
<td>1,19</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>- alguma vez</td>
<td>1038</td>
<td>1307</td>
<td>(0,96-1,47)</td>
<td>(0,97-1,47)</td>
</tr>
<tr>
<td>Higiene antes da alimentação</td>
<td>- pequena</td>
<td>167</td>
<td>122</td>
<td>1,94</td>
<td>1,92</td>
</tr>
<tr>
<td></td>
<td>- grande</td>
<td>531</td>
<td>753</td>
<td>(1,49-2,53)</td>
<td>(1,48-2,50)</td>
</tr>
<tr>
<td>Higiene após defecar</td>
<td>- pequena</td>
<td>203</td>
<td>126</td>
<td>2,41</td>
<td>2,37</td>
</tr>
<tr>
<td></td>
<td>- grande</td>
<td>484</td>
<td>724</td>
<td>(1,86-3,12)</td>
<td>(1,84-3,06)</td>
</tr>
<tr>
<td>Disposição dos esgotos</td>
<td>- outra</td>
<td>643</td>
<td>472</td>
<td>1,96</td>
<td>1,97</td>
</tr>
<tr>
<td></td>
<td>- rede pública</td>
<td>321</td>
<td>461</td>
<td>(1,62-2,37)</td>
<td>(1,63-2,37)</td>
</tr>
<tr>
<td>Existência de córrego</td>
<td>- sim</td>
<td>367</td>
<td>331</td>
<td>1,13</td>
<td>1,14</td>
</tr>
<tr>
<td></td>
<td>- não</td>
<td>628</td>
<td>639</td>
<td>(0,93-1,36)</td>
<td>(0,94-1,37)</td>
</tr>
<tr>
<td>Esgotos escorrendo na rua</td>
<td>- sim</td>
<td>530</td>
<td>281</td>
<td>2,74</td>
<td>2,74</td>
</tr>
<tr>
<td></td>
<td>- não</td>
<td>467</td>
<td>679</td>
<td>(2,27-3,32)</td>
<td>(2,27-3,32)</td>
</tr>
<tr>
<td>Lançamento fezes de fraldas</td>
<td>- outro destino</td>
<td>221</td>
<td>74</td>
<td>3,01</td>
<td>2,94</td>
</tr>
<tr>
<td></td>
<td>- vaso ou fossa</td>
<td>553</td>
<td>558</td>
<td>(2,24-4,06)</td>
<td>(2,19-3,94)</td>
</tr>
<tr>
<td>Acondicionamento do lixo</td>
<td>- outra embal.</td>
<td>770</td>
<td>561</td>
<td>2,48</td>
<td>2,51</td>
</tr>
<tr>
<td></td>
<td>- saco de lixo</td>
<td>226</td>
<td>409</td>
<td>(2,03-3,04)</td>
<td>(2,05-3,06)</td>
</tr>
<tr>
<td>Disposição do lixo</td>
<td>- outro destino</td>
<td>310</td>
<td>176</td>
<td>2,03</td>
<td>2,06</td>
</tr>
<tr>
<td></td>
<td>- coleta pública</td>
<td>685</td>
<td>790</td>
<td>(1,64-2,52)</td>
<td>(1,68-2,56)</td>
</tr>
<tr>
<td>Frequência de coleta</td>
<td>≤ 2 vez/semana</td>
<td>206</td>
<td>160</td>
<td>1,69</td>
<td>1,66</td>
</tr>
<tr>
<td></td>
<td>≥ 3 vez/semana</td>
<td>477</td>
<td>626</td>
<td>(1,32-2,16)</td>
<td>(1,30-2,11)</td>
</tr>
<tr>
<td>Inundação do lote</td>
<td>- sim</td>
<td>438</td>
<td>263</td>
<td>2,11</td>
<td>2,11</td>
</tr>
<tr>
<td></td>
<td>- não</td>
<td>557</td>
<td>705</td>
<td>(1,74-2,56)</td>
<td>(1,75-2,55)</td>
</tr>
<tr>
<td>Empoçoamento no lote</td>
<td>- sim</td>
<td>288</td>
<td>210</td>
<td>1,47</td>
<td>1,46</td>
</tr>
<tr>
<td></td>
<td>- não</td>
<td>706</td>
<td>757</td>
<td>(1,19-1,82)</td>
<td>(1,19-1,80)</td>
</tr>
<tr>
<td>Presença de moscas</td>
<td>≥ 3 mês/ano</td>
<td>771</td>
<td>659</td>
<td>1,60</td>
<td>1,59</td>
</tr>
<tr>
<td></td>
<td>≤ 1 mês/ano</td>
<td>211</td>
<td>289</td>
<td>(1,30-1,98)</td>
<td>(1,29-1,96)</td>
</tr>
<tr>
<td>Presença de mosquitos</td>
<td>- todo o tempo</td>
<td>654</td>
<td>547</td>
<td>1,48</td>
<td>1,48</td>
</tr>
<tr>
<td></td>
<td>- ≤ 6 mês/ano</td>
<td>338</td>
<td>419</td>
<td>(1,23-1,79)</td>
<td>(1,23-1,78)</td>
</tr>
<tr>
<td>Presença de baratas</td>
<td>- ≥ 3 mês/ano</td>
<td>629</td>
<td>479</td>
<td>1,76</td>
<td>1,74</td>
</tr>
<tr>
<td></td>
<td>- ≤ 1 mês/ano</td>
<td>362</td>
<td>486</td>
<td>(1,47-2,12)</td>
<td>(1,45-2,09)</td>
</tr>
<tr>
<td>Presença de ratos</td>
<td>≥ 1 vez/semestre</td>
<td>444</td>
<td>269</td>
<td>2,10</td>
<td>2,08</td>
</tr>
<tr>
<td></td>
<td>≤ 1 vez/ano</td>
<td>545</td>
<td>695</td>
<td>(1,74-2,55)</td>
<td>(1,72-2,52)</td>
</tr>
</tbody>
</table>
5- DISCUSSÃO

5.1- DA METODOLOGIA

5.1.1- PROBLEMAS INERENTES AOS ESTUDOS CASO-CONTROLE

5.1.1.1- CONSIDERAÇÕES GERAIS

O método caso-controle corresponde ao método mais frequentemente empregado nos estudos epidemiológicos analíticos, em vista de geralmente apresentar menores duração e dimensão da amostra, e, consequentemente, menor custo, comparado com outros métodos (KELSEY et al., 1986). ROTHMAN (1986) considera inclusive que a sofisticação no uso e a compreensão dos estudos caso-controle constituem o mais notável desenvolvimento metodológico da epidemiologia moderna.

Alguns problemas potenciais de ordem metodológica podem estar associados aos estudos caso-controle, no entanto. Por esse motivo, mostra-se fundamental a discussão desses problemas em cada estudo realizado, de modo a se identificarem eventuais vieses e a se avaliarem, com o contorno adequado, os seus resultados.

Nas seções seguintes, são discutidos os principais problemas metodológicos inerentes aos estudos caso-controle, no contexto do trabalho em tela.

5.1.1.2- BIAS DE SELEÇÃO DIFERENCIADA DE CASOS E DE CONTROLES

O bias de seleção ocasiona a distorção da estimativa do efeito, resultante da maneira como indivíduos são selecionados para o estudo, isto é, para a amostra estudada (KLEINBAUM et al., 1982). Ocorre quando a seleção de casos e de controles introduz indivíduos para o estudo com probabilidade não independente de seu status de exposição.
Para os casos, no presente estudo, parece não ter havido uma diferenciação na elegibilidade em função do status de exposição, na medida em que adotou-se como base hospitalar para seleção todas as instituições de saúde da área geográfica abrangida. Poder-se-ia suspeitar que foram selecionados para o estudo apenas estratos de inferior condição sócio-econômica, caso as instituições privadas tivessem sido excluídas. Porém, a efetiva coleta de casos no Hospital da UNIMED e na Fundação dos Empregados da FIAT, as maiores instituições privadas locais, asseguram a minimização dessa natureza de bias. De fato, nas pequenas clínicas particulares houve uma perda proporcionalmente importante de casos, porém pouco representativa no contexto do estudo, dado o reduzido número de médicos pediátricos e de relatos de diarreia infantil naquelas unidades, se comparados com os das demais instituições incluídas no estudo.

Uma outra avaliação necessária refere-se à verificação de se casos e controles advieram da mesma população. Na amostra de 100 casos em que foi realizada essa pesquisa, conforme descrito na seção 4.1.1, um reduzido índice de identificação dos endereços na listagem geradora dos controles foi observada. A explicação encontrada para essa elevada divergência baseia-se, entre outros fatos, na baixa correspondência entre os endereços oficiais e a denominação de logradouros e numeração dos lotes em campo, além de na possível existência de invasões e de assentamentos clandestinos. Particularmente, essa última suspeita, de dimensão não quantificável, poderia redundar na introdução de bias de seleção, uma vez que essas ocupações não componham o universo adotado para a seleção dos controles. Um procedimento adotado, que certamente atenua o problema, é representado pela orientação, aos entrevistadores, de circulação das quadras no sentido horário, quando da não existência de crianças menores de cinco anos na moradia indicada para controle. Essa necessidade manifestou-se na maioria dos controles sorteados, muitas vezes implicando em numerosas mudanças sucessivas de endereço, reintroduzindo na amostra os eventuais assentamentos não oficiais. Saliente-se que a própria ocupação por favelas na cidade desenvolve-se de forma bastante integrada com a malha urbana oficial.

Por fim, devem ser avaliadas as recusas e as ausências de respostas. Essa perda, em geral, foi bastante reduzida, inferior a 10% para todas as variáveis, com exceção da variável renda familiar, que registrou 31% de perdas. Isso foi contornado excluindo-se a variável da análise multivariada, por se considerar que outras características pudessem explicar a condição socio-econômica familiar.
5.1.1.3. BIAS DE SELEÇÃO DOS CASOS

Esse bias pode ocorrer sobretudo através de problemas na vigilância, no diagnóstico ou na referência diagnóstica (SCHLESSELMAN, 1982). Perdas de casos previamente selecionados, por motivos diversos, também podem afetar a seleção.

No caso específico desta pesquisa, a seleção dos casos baseou-se na ocorrência de diarreias severas ou medianamente severas, definidas como aquelas cuja severidade fosse suficiente para a procura de atendimento clínico (BRISCOE et al., 1986). Nesse sentido, as seguintes expectativas quanto à ocorrência de bias de seleção de casos podem ser inferidas:

- **Vigilância**
 Essa categoria de bias ocorreria caso houvesse uma vigilância quanto à ocorrência de diarreia, dirigida especialmente para a população mais suscetível à ausência de condições de saneamento ou com precários hábitos higiênicos. Como, no período do estudo, não havia qualquer programa institucional com essa preocupação, o problema não se impôs.

- **Diagnóstico**
 Diarreia corresponde a uma manifestação de definição clara. É muito pouco provável se reportar com diarreia uma criança que não a tenha tido, proporcionando uma elevada *sensibilidade*. Por outro lado, a exclusão do estudo de uma criança com diarreia pode ocorrer em algumas situações, como quando este representa um sintoma secundário ou quando há um preenchimento incorreto do CID nas fichas de registro de entrada. Seria, dessa forma, moderada a *especificidade* da seleção de casos. Acredita-se, porém, que no presente estudo não tenha sido elevada tal perda, podendo ter ocorrido principalmente nas situações onde a diarreia representava sintoma secundário de, por exemplo, doença do aparelho respiratório. Nessa situação, a perda excluiu do estudo precisamente estágios menos severos de diarreia.

- **Referência diagnóstica**
 Perdas devidas à ausência de referência diagnóstica dos casos parecem ter sido baixas, uma vez que a metodologia finalmente adotada para a coleta dos casos previu a verificação de todos os registros de entrada nas instituições de saúde. Mostra-se improvável uma elevada falta de registros de entrada, uma vez que a
produtividade dos clínicos, para efeito de definição de sua remuneração mensal, é contabilizada a partir dessas informações.

- **Perda de casos previamente contabilizados**

Essa perda efetivamente ocorreu, motivada sobretudo pela não localização de endereços em campo. Cumpre apenas discutir o seu perfil, ou seja, se a perda distribui-se homogênea ou heterogêneamente entre expostos e não expostos. Conforme mostrado na seção 4.1.1, apenas as instituições 05-PB e 05-PV caracterizaram uma proporção de perdas distinta da média global, cada uma em uma direção.

Assim, a instituição 05-PB - Centro de Saúde Antônio José Salomão - acusou 20 perdas em 25 casos totais (80%), tendo respondido por apenas 1,8% dos casos totais e 0,5% dos casos aproveitados. Corresponde, portanto, a um centro de saúde de porte muito reduzido para afetar a representatividade da amostra.

Por outro lado, a instituição 05-PV - Fundação dos Empregados da FIAT - demonstrou apenas 7% de perdas (4 em 58) e foi responsável por 5,40 e 4,10%, respectivamente dos casos aproveitados e dos casos totais. A instituição constitui uma clínica de atendimento aos funcionários daquela empresa automobilística, os quais, por sua vez, tendem a ter suas moradias distribuídas pela área urbana de Belém, de forma independente de qualquer condicionante geográfico ou relacionado às condições de saneamento. Isto, associado à reduzida proporção de casos coletados na instituição, descarta a possibilidade de bias ocasionado pela baixa perda verificada.

Pode-se inferir, portanto, que possivelmente a perda de casos não guarde relação com as variáveis de exposição avaliadas.
5.1.1.4. BIAS NA ESTIMATIVA DA EXPOSIÇÃO

Os seguintes aspectos podem ser analisados:

- **Bias de recordação**
 Segundo SCHLESSELMAN (1982), problemas nas respostas ao inquérito podem originar-se de falha de memória, de confusão ou de esforço para agradar ao entrevistador.

 Buscando minimizar tal ordem de problemas, procurou-se estruturar a entrevista de modo a se evitarem perguntas subjetivas. Após concluídas as entrevistas, a avaliação do grau de dificuldade nas respostas foi realizada através do teste de confiabilidade realizado pelos mesmos entrevistadores. Como resultado do teste, observou-se, em geral, que esse tipo de bias apresenta distribuição diferenciada, em função do tipo de questão apresentada.

 Segundo o teste das replicações de entrevistas realizadas pelo mesmo entrevistador, em média 46% das questões apresentaram concordância quase perfeita ou substancial e 54% concordância pobre, concordância regular ou nenhuma concordância, de acordo com critérios recomendados por LILIENFELD & STOLLEY (1994). Constatou-se, geralmente, que variáveis relativas à descrição de hábitos e a observações do cotidiano tendem a apresentarem menor confiabilidade que aquelas relacionadas à descrição da estrutura da moradia ou da família.

- **Bias do entrevistador**
 Respostas viciadas podem ser inadvertidamente estimuladas ou encorajadas por um entrevistador inteirado da hipótese em consideração, por exemplo exterminando seu prazer em obter respostas "positivas", através de uso de linguagem, entonação ou inflexão da voz, ou ainda do emprego inconsciente de "linguagem corporal", como o franzir de sobrancelhas (SCHLESSELMAN, 1982). Procurou-se minimizar esse efeito através do treinamento e monitoramento dos entrevistadores e do emprego da entrevista "duplo-cego" ou "simples-cego", na medida do possível.

 Teoricamente, a diferença entre os resultados do teste de confiabilidade realizado por entrevistador diferente e o realizado pelo mesmo entrevistador
traduziria o bias do entrevistador. Na prática, o comportamento não corresponde
extatamente ao esperado, uma vez que, para o mesmo entrevistador, o
entrevistado pode responder às perguntas de forma diferenciada, em momentos
diferentes.

O teste de confiabilidade apontou para diferenças pouco importantes entre o
nível de concordância das replicações realizadas com outro entrevistador e com
o mesmo entrevistador, o que comprova um efeito desprezível dessa natureza de
bias, conforme TAB. 46.

5.1.1.5. ESTIMATIVA DO RISCO

A medida de risco em estudos caso-controle tradicionais corresponde ao "odds ratio"
(OR), que se aproxima do risco relativo (RR) quando a doença é rara (KLEINBAUM et
al., 1982).

No caso específico da variante caso-coorte, a razão relativa determinada já
representa uma estimativa do risco relativo, devido ao fato de a amostra controle
constituir uma amostra representativa da população total (RODRIGUES &
KIRKWOOD, 1990). Portanto, eventuais discussões quanto à aplicabilidade do OR
como medida de risco não são pertinentes, uma vez que a medida adotada já estima
o risco relativo, consagrado enquanto parâmetro de avaliação de risco nos estudos
epidemiológicos observacionais.

5.1.2. AVALIAÇÃO DAS PREMISSAS ADOTADAS NO
DELINEAMENTO

A principal premissa epidemiológica adotada no planejamento do estudo, que pode
ter afetado quantitativamente seus resultados, constitui a definição da magnitude da
amostra. Conforme explicitado na seção 3.3, a fixação dessa variável sustentou-se
em determinadas suposições, dado o desconhecimento de alguns importantes
fatores previamente ao desenvolvimento do estudo. Em verdade, objetivou-se, com a
própria pesquisa, avaliar tamanhos convenientes de amostra, de modo a orientar
futuras aplicações de natureza similar.
Na determinação do tamanho da amostra, houve uma análise inicial, considerando exposições dicótômicas, e uma análise posterior, prevendo-se exposições múltiplas. Ficou demonstrado que essa última consideração pode ocasionar um incremento substancial da amostra, conforme verificado na seção 3.3.

Uma primeira conclusão, possibilitada pelo presente estudo, é a de que raramente a avaliação de múltiplas exposições enriquece as conclusões pretendidas. Isto porque, considerando-se ser o objetivo do estudo apontar prioridades de intervenção, o conhecimento detalhado das exposições não mostra-se relevante. Por exemplo, para o abastecimento de água, mostra-se importante a comparação entre o abastecimento pela rede pública e o abastecimento por outras fontes, não melhorando a informação a diferenciação das outras fontes. O mesmo procede para o esgotamento sanitário, onde se deseja conhecer a necessidade de implantação de rede pública, ou, no máximo, adicionalmente avaliar a adequação de fossas melhoradas, não havendo interesse em analisar com riqueza maior de detalhes as demais formas de disposição.

Em vista disso, verificando-se a dimensão da amostra para exposições dicótômicas e mantendo-se os valores de z_{α} e de z_{β} como 1,96 e 1,28, respectivamente, algumas exposições importantes analisadas demandariam amostras com os valores exibidos na TAB. 36, para a análise univanada [equação (1), seção 3.3].
TABELA 36

TAMANHOS DA AMOSTRA PARA EXPOSIÇÕES DIVERSAS, NAS CONDIÇÕES ENCONTRADAS NA PESQUISA

<table>
<thead>
<tr>
<th>EXPOSIÇÃO</th>
<th>p0 (%)</th>
<th>p1 (%)</th>
<th>RR</th>
<th>n' *</th>
<th>valores ausentes (%)</th>
<th>n *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origem da água (outra fonte x rede pública)</td>
<td>95,66</td>
<td>98,39</td>
<td>2,78</td>
<td>809</td>
<td>0,45</td>
<td>813</td>
</tr>
<tr>
<td>Falta de água (sim x nunca)</td>
<td>50,58</td>
<td>55,93</td>
<td>1,24</td>
<td>1.823</td>
<td>2,76</td>
<td>1.901</td>
</tr>
<tr>
<td>Preparo da água (não x sim)</td>
<td>88,93</td>
<td>92,58</td>
<td>1,55</td>
<td>1.324</td>
<td>0,25</td>
<td>1.327</td>
</tr>
<tr>
<td>Preparo de alimentos (outro x desinfeção)</td>
<td>2,08</td>
<td>9,19</td>
<td>4,75</td>
<td>219</td>
<td>3,95</td>
<td>228</td>
</tr>
<tr>
<td>Existência de reservatório (não x sim)</td>
<td>64,89</td>
<td>85,77</td>
<td>3,26</td>
<td>87</td>
<td>0,55</td>
<td>88</td>
</tr>
<tr>
<td>Proteção do reservatório (sem x com cobertura)</td>
<td>91,46</td>
<td>94,20</td>
<td>1,52</td>
<td>1.859</td>
<td>26,25</td>
<td>2.521</td>
</tr>
<tr>
<td>Freqüência de limpeza (nunca x alguma vez)</td>
<td>83,31</td>
<td>85,59</td>
<td>1,19</td>
<td>5.302</td>
<td>29,86</td>
<td>7.559</td>
</tr>
<tr>
<td>Higiene antes alimentação (pequena x grande)</td>
<td>76,97</td>
<td>85,94</td>
<td>1,92</td>
<td>330</td>
<td>20,14</td>
<td>413</td>
</tr>
<tr>
<td>Higiene após defecar (pequena x grande)</td>
<td>70,45</td>
<td>84,96</td>
<td>2,37</td>
<td>171</td>
<td>21,94</td>
<td>219</td>
</tr>
<tr>
<td>Disposição dos esgotos (outro x rede pública)</td>
<td>33,30</td>
<td>49,53</td>
<td>1,97</td>
<td>191</td>
<td>3,56</td>
<td>198</td>
</tr>
<tr>
<td>Existência de córrego (sim x não)</td>
<td>63,12</td>
<td>66,03</td>
<td>1,14</td>
<td>5.670</td>
<td>0,15</td>
<td>5.678</td>
</tr>
<tr>
<td>Esgotos escoando na rua (sim x não)</td>
<td>46,84</td>
<td>70,75</td>
<td>2,74</td>
<td>87</td>
<td>0,55</td>
<td>87</td>
</tr>
<tr>
<td>Lançamento fezes fraldas (outro x vaso ou fossa)</td>
<td>71,45</td>
<td>88,02</td>
<td>2,94</td>
<td>121</td>
<td>28,61</td>
<td>170</td>
</tr>
</tbody>
</table>
TABELA 36 (continuação)

TAMANHOS DA AMOSTRA PARA EXPOSIÇÕES DIVERSAS, NAS CONDIÇÕES ENCONTRADAS NA PESQUISA

<table>
<thead>
<tr>
<th>EXPOSIÇÃO</th>
<th>p<sub>0</sub> (%)</th>
<th>p<sub>1</sub> (%)</th>
<th>RR</th>
<th>n* (%)</th>
<th>valores ausentes (%)</th>
<th>n*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acondicionamento do lixo (outro x saco de lixo)</td>
<td>22,69</td>
<td>42,38</td>
<td>2,51</td>
<td>117</td>
<td>0,10</td>
<td>117</td>
</tr>
<tr>
<td>Disposição do lixo (outro x coleta pública)</td>
<td>68,84</td>
<td>81,99</td>
<td>2,06</td>
<td>223</td>
<td>0,35</td>
<td>224</td>
</tr>
<tr>
<td>Frequência de coleta (≤ 2 vez/ sem. x ≥ 3 vez/ sem.)</td>
<td>69,84</td>
<td>79,31</td>
<td>1,68</td>
<td>442</td>
<td>25,10</td>
<td>590</td>
</tr>
<tr>
<td>Inundação do lote (sim x não)</td>
<td>55,98</td>
<td>72,89</td>
<td>2,11</td>
<td>166</td>
<td>0,25</td>
<td>166</td>
</tr>
<tr>
<td>Empoçoamento no lote (sim x não)</td>
<td>71,03</td>
<td>78,19</td>
<td>1,46</td>
<td>774</td>
<td>0,35</td>
<td>776</td>
</tr>
<tr>
<td>Presença de moscas (≥ 3 mês/ano x ≤ 1 mês/ano)</td>
<td>21,49</td>
<td>30,33</td>
<td>1,59</td>
<td>514</td>
<td>1,90</td>
<td>524</td>
</tr>
<tr>
<td>Presença de mosquitos (todo o tempo x ≤ 6 meses/ano)</td>
<td>34,07</td>
<td>43,26</td>
<td>1,48</td>
<td>587</td>
<td>0,50</td>
<td>590</td>
</tr>
<tr>
<td>Presença de baratas (≥ 3 mês/ano x ≤ 1 mês/ano)</td>
<td>36,53</td>
<td>50,05</td>
<td>1,74</td>
<td>280</td>
<td>0,60</td>
<td>282</td>
</tr>
<tr>
<td>Presença de rato (≥ 1 vez/semestre x ≤ 1 vez/ano)</td>
<td>44,89</td>
<td>71,88</td>
<td>2,08</td>
<td>171</td>
<td>0,75</td>
<td>172</td>
</tr>
</tbody>
</table>

* n para cada grupo (n_{CASO}=n_{CONTROLE})
Notas-se que uma amostra entre 500 e 600 casos e igual número de controles - BRISCOE et al. (1988) propõem 500 - seria capaz de detectar associação, na análise univariada, para a grande maioria das exposições investigadas. Algumas exposições demandariam amostras de dimensão bastante superior, sugerindo a inexistência de associação, enquanto que a *origem da água*, por exemplo, exigiria amostra cerca de 50% superior. Nesse último caso, a reduzida incidência da exposição constitui a possível responsável pelo resultado, o que, por outro lado, restringe o interesse em se delinear um estudo com poder suficiente para avaliar-la.

É importante destacar que essa proposição geral quanto a uma dimensão ótima da amostra, ao ser extrapolada para outras situações, deverá considerar cada caso específico, particularmente a prevalência populacional das exposições de interesse.

Além disso, a metodologia clássica empregada para o dimensionamento da amostra considera a análise univariada ou bivariada, não levando em conta as possíveis alterações nas medidas de risco oriundas do desenvolvimento do modelo multivariado, como aqui detectadas. É possível que essas alterações conduzam a uma elevação na dimensão ótima da amostra, uma vez que o presente estudo indicou, via de regra, uma redução nos riscos relativos, da análise univariada para a multivariada.

5.1.3- AVALIAÇÃO DA APLICABILIDADE DO MÉTODO CASO-COORTE

Um paralelo entre o delineamento adotado, empregando o método caso-coorte, e um eventual delineamento similar, porém empregando o método caso-controle tradicional, envolve as seguintes considerações:

- **Vantagens do método caso-coorte**

- Apresenta-se uma maior facilidade, do ponto de vista da organização logística do trabalho, de realização das entrevistas com a amostra de controles, dispensando a fase de coleta de indivíduos acometidos pela doença ou pelo grupo de doenças adotado. Dependendo da definição das doenças ou grupo de doenças, o método pode ainda minimizar bias de seleção dos controles.
• No estudo caso-coorte, obtém-se a estimativa do risco relativo, e não do "odds ratio", como medida de risco. Uma comparação entre o RR encontrado neste estudo e o OR simulado, mediante a exclusão dos 28 controles posteriormente selecionados como casos, foi incluída na seção 4.10. Observa-se uma rigorosa similaridade entre as duas medidas de risco, no que se refere tanto à sua estimativa pontual, quanto aos intervalos de confiança ao nível de 95%.

Portanto, no presente delineamento não se traduziu em vantagens a obtenção do RR, e não do OR, em vista de tais indicadores se apresentarem com valores muito próximos. Esse resultado explica-se pelo fato de que a variável dependente adotada - incidência de diarreia em crianças de até cinco anos - caracteriza-se como doença rara, sob o ponto de vista epidemiológico, na realidade estudada.

■ Desvantagens do método caso-coorte

• Ocorre o risco de não se verificar uma convergência entre as áreas geográficas adotadas para a seleção dos casos e dos controles, em razão de a área de influência das instituições de saúde poder não coincidir com a área abrangida pela listagem de onde se originam os controles.

• Manifesta-se o risco de não ser obtida uma perfeita distribuição aleatória na seleção dos controles, por deficiências na relação de endereços de onde a amostra é extraída. Nos centros urbanos, é frequente que as administrações municipais possuam informações relativamente consistentes da chamada "cidade legal", enquanto que a "cidade real" congrega ainda um expressivo contingente de moradias sem registro oficial nos órgãos competentes. Nessa situação, a amostra de controles estaria sendo obtida em um universo possivelmente com maior status sócio-econômico e, sobretudo, com mais adequada infra-estrutura sanitária, que a média da população urbana.

Conforme já assinalado, o primeiro dos aspectos anteriores deve ter ocorrido em pequena proporção na pesquisa. O segundo fator pode ter se verificado, em dimensão difícil de ser quantificada, entretanto com efeito atenuado pela metodologia empregada na seleção dos controles.
5.2- DA ANÁLISE EPIDEMIOLÓGICA

Conforme descrito na seção 3.9, a análise epidemiológica foi desenvolvida segundo um processo evolutivo, em etapas, de tal forma a se permitir a determinação progressiva das exposições efetivamente associadas à doença, além dos fatores de confusão e das modificações de efeito. Tal processo envolveu, em sequência, as seguintes atividades:

- distribuição de frequências para os grupos caso e controle, propiciando a avaliação da precisão e da consistência dos dados levantados;

- análise univariada, com a determinação da estimativa pontual e do intervalo de confiança dos riscos relativos, bem como análises auxiliares, como o cálculo do risco atribuível e testes de tendência;

- análise bivariada, levantando potenciais confusões e modificações de efeito, através de estratificação;

- análise multivariada, com a construção de um modelo matemático, através do método da regressão logística, também empregando um processo de etapas sucessivas de descarte de variáveis.

Tal sistemática mostrou-se adequada quanto à sua consistência e ao seu rigor científico. Alguns comentários, porém, podem ser apresentados, na perspectiva de uma análise crítica do processo:

- Em vista do elevado número de variáveis de exposição e de potenciais variáveis confundíveis em análise, uma quantidade muito elevada de combinações apresentam-se passíveis de consideração na análise bivariada. Por essa razão, são exploradas algumas possíveis confusões e modificações de efeito, porém deixa-se de avaliar relações entre outros pares de variáveis, gerando uma informação limitada para ser trabalhada na construção do modelo multivariado.

- O modelo multivariado é muito sensível a algumas decisões adotadas no seu desenvolvimento, tais como o número de categorias estabelecidas para cada variável, o ponto de corte dessas categorias, a composição dos subgrupos de análise e o valor de \(p \) fixado em cada etapa como nível de descarte. Tal método
de análise exige uma evolução cautelosa, na qual devem ser avaliadas as hipóteses assumidas, em conjunto com os dados e informações preliminares, sob o risco de sério comprometimento do modelo (GREENLAND, 1989).

A interpretação do n sco atribuível como "a fração da doença na população que pode ser evitada pela redução ou eliminação da exposição a um agente etiológico" (COUGHLIN et al., 1994) verifica-se complexa. Variáveis que se caracterizam por elevados valores de pe (proporção de indivíduos expostos na população alvo) e/ou do RR, correspondem a um risco atribuível também elevado, conforme exibido na seção 4.7. Mesmo assumindo a não linearidade da relação entre exposição e doença (BRISCOE, 1987), mostra-se de difícil análise a constatação de que o somatório dos riscos atribuíveis, apenas das quatro exposições com maiores valores de RA, supera a 200%.

Uma possível alternativa de método a ser empregado na análise multivariada é a da análise fatorial discriminante, através da técnica não inferencial, conhecida por "analyse des données" pela escola estatística francesa (ASENSIO, 1988). Através desse método, é possível determinar, de forma conjunta dentre todo o universo de variáveis, aquelas que diferenciam, ou discriminam, os grupos caso e controle, expurgando a colinearidade entre variáveis.

5.3- DAS ASSOCIAÇÕES ENTRE CONDIÇÕES DE SANEAMENTO E DIARRÉIA

5.3.1- ABASTECIMENTO DE ÁGUA

5.3.1.1- ORIGEM DA ÁGUA

O fornecimento de água através da rede pública apresenta um caráter protetor, na análise univariada, configurando um RR de 2,78 (1,51 - 5,18) para as crianças que viviam em moradias onde a origem principal da água para ingestão eram poços rasos ou caminhões pipa. Na análise multivariada, tal associação deixa de mostrar-se estatisticamente significativa, revelando que fatores de confusão afetavam a relação anterior.
A expectativa, de fato, era de que as populações atendidas pela rede pública de abastecimento de água, sob a responsabilidade da COPASA-MG, estivessem mais protegidas do risco de incidência de diarreia infantil, se comparadas com aquelas atendidas por outras fontes. Sabe-se que, em geral, o sistema integrado de abastecimento de água da RMBH apresenta padrões de qualidade da água satisfatórios, embora nem sempre com um atendimento populacional pleno ou com abastecimento regular, em especial nas regiões de maior elevação altimétrica ou mais distantes dos centros de reservação.

Uma hipótese de trabalho provável é a de que as demais origens da água implicam em um abastecimento mais inadequado que o da rede pública.

Os poços rasos são muito vulneráveis à contaminação, especialmente quando cuidados construtivos e operacionais não são observados (WAGNER & LANOIX, 1959). Da amostra de poços investigada, 32,73% apresentavam cobertura possivelmente precária e 52,73% extração de água com balde e corda, sendo que a utilização de cloradores era verificada em apenas 18,52% deles. Além disso, limitações quantitativas do manancial e, em grande parte das vezes, o desconforto para a retirada da água são fatores que podem induzir a um baixo consumo "per capita" dos usuários de poços rasos.

Com relação à água fornecida por caminhões pipa, a origem incerta da água - 67% dos entrevistados a desconheciam - e a regularidade apenas semanal do fornecimento são fatores que sugerem a inadequação sanitária da solução, no contexto verificado em Betim.

Tais características das origens da água distintas da rede pública favoreceriam a transmissão de diarreias de etiologias diversas, segundo os dois primeiros mecanismos de transmissão previstos na classificação ambiental das infecções relacionadas com a água, exposta na seção 2.2.

A despeito dessas considerações, o modelo multivariado indicou ausência de associação entre a origem da água e a ocorrência de diarreia, na presente pesquisa. Possivelmente, a reduzida proporção de indivíduos com fonte de abastecimento distinta da rede pública - 4,34% dos casos e 1,61% dos controles - seja responsável pelo resultado encontrado.
Outras investigações também foram incapazes de demonstrar essa associação, como a de RYDER et al. (1985) no Panamá, que estudou a relação entre a existência de sistema público de abastecimento de água e a incidência de diarreia. Da mesma forma, uma associação não significativa foi encontrada em Malawi, com RR para mortalidade até cinco anos de 2,5 (0,77 - 10,0).

Entretanto, tal associação tem sido caracterizada em outras situações. CHAMBERS et al. (1989) demonstraram associação entre o abastecimento de água inseguro e/ou insatisfatório, conforme definição das autoridades ambientais do Canadá, com infecções entéricas. Nos Estados Unidos, CHUTE et al. (1987) determinaram um OR de 2,1 (1,3-3,2) para giardíase, dos usuários de poços rasos, em comparação com a população abastecida por poços profundos ou sistemas municipais. Um valor elevado do risco relativo para infecções entéricas - de 13,42 (1,65 - 52,1) - caracterizou os consumidores sem água encanada, na República Centro-Africana (COURBOT et al., 1990). No Brasil, a implantação de redes de abastecimento de água, em favelas de Belo Horizonte, redundou em uma redução significativa na incidência de diarreia infantil (GROSS et al., 1989), enquanto que no Rio Grande do Sul foi determinado um RR ajustado de 4,8 (1,7 - 13,8) para a mortalidade de crianças por diarreia, entre as famílias sem disponibilidade de água encanada (VICTORA et al., 1988).

Uma outra abordagem possível para a explicação dos resultados da presente pesquisa consideraria a hipótese de que a amostra adotada não fornece uma suficiente força de associação (erro β). Na análise multivariada, com a introdução de todas as principais variáveis no modelo logístico, a origem da água carateriza um RR de 1,89 (0,89 - 3,99), com p = 0,0976. Objetivando-se avaliar o valor de β, aplicaram-se as equações (1) e (2) da seção 3.3, rearranjadas, com os seguintes valores de entrada:

\[\bar{n} = 994 \text{ (média aritmética das amostras caso e controle);} \]
\[p_0 = 0,0161 \text{ e} \]
\[RR = 1,89. \]

Obteve-se um valor de zp = 0,1072 e, consequentemente, um valor de β = 0,54. Este resultado significa que, se o risco relativo populacional é de 1,89, um estudo caso-controle com 994 indivíduos por grupo apresenta apenas 54% de chance de a estimativa amostral de RR ser significativamente (α = 0,05) diferente da unidade.
Outro dado levantado referiu-se à percepção do entrevistado quanto à água fornecida pelo sistema público, do ponto de vista qualitativo. Na pesquisa, não se manifestou associação entre a percepção organoléptica de sabor, odor, cor ou turbidez da água com a diarreia infantil. Tal resultado encontra sustentação científica, pois, obviamente, o registro, por parte do usuário, das características organolépticas da água não corresponde a uma relação direta com a sua qualidade microbiológica, responsável final pela transmissão das doenças infecciosas.

5.3.1.2- INTERMITÊNCIA NO FORNECIMENTO DE ÁGUA

A intermitência no fornecimento de água do sistema público demonstra associação com diarreia infantil na análise univariada, com RR de até 2,12 e com p < 0,001 na análise de tendência. A comparação dicotômica entre "falta água" e "nunca falta água" resulta em um RR de 1,24 (1,03 - 1,49). Na análise multivariada, contudo, tal associação não mais se caracteriza.

A intermitência no abastecimento pode se relacionar com o risco à saúde, a partir de três efeitos principais: ocasionar um baixo consumo "per capita", implicar em contaminação da rede e acarretar na procura de fontes alternativas de abastecimento.

No primeiro caso, a associação entre intermitência no fornecimento e baixo consumo "per capita" não está devidamente estabelecida na literatura. A presente pesquisa indicou associação entre o consumo "per capita" e o número de dias anuais com indicação de ausência de fornecimento, através da análise de correlação linear, mostrando um decréscimo de 1 l/hab.dia no consumo "per capita", para cada acréscimo de 10 dias anuais sem fornecimento. Na análise estatística, tanto a inclinação da reta (b), quanto o coeficiente de correlação (r), mostraram-se estatisticamente significativos (p = 0), embora com baixo valor deste último parâmetro (r = 0,112). A figura a seguir ilustra a relação:
FIGURA 36
RELAÇÃO ENTRE INTERMITÊNCIA NO ABASTECIMENTO E CONSUMO "PER CAPITA" (qpc)

Quanto à relação entre intermitência no fornecimento e a contaminação da rede, é comum na Engenharia Sanitária que a intermitência em um sistema pressurizado de água potável conduza ao risco de subpressão nos condutos. Esta, por sua vez, pode provocar a penetração, no interior das tubulações, de líquidos contaminados presentes nos interstícios do subsolo. A situação, no entanto, não ocorre necessariamente sempre que se verifica a interrupção do abastecimento. Concorrem para o fenômeno:

- a ocorrência ou não de pressão negativa no conduto e, quando da ocorrência, seu valor e sua duração;

- as condições de resistência à pressão externa das juntas das tubulações;

- a presença de líquidos, contaminados por patogênicos causadores de diarréia, no subsolo adjacente à tubulação;
a sobrevivência e condições de transporte dos patogênicos no subsolo, sendo
que tem sido observada uma reduzida capacidade de transporte horizontal de
coliformes e de bactérias patogênicas (EHLERS & STEEL, 1958), a menos que
estes atinjam o lenço freático (PAUSE, 1987).

Finalmente, o terceiro efeito - procura de fontes alternativas de abastecimento - não
parece corresponder à realidade do universo pesquisado, em função das respostas
quanto à origem da água obtidas. Em algumas realidades, porém, representa um
risco efetivo sobre a saúde. Em Moçambique (BURNS et al., 1993), a intermitência no
abastecimento público ocasionou o uso, pelos moradores, de água subterrânea
frequentemente contaminada. Naquele país, a procura por essas fontes não
protegidas foi associada a uma elevação na incidência de diarreia e de cólera.

Pelar razões expostas, parece plausível concluir que em apenas uma reduzida
proporção dos episódios de interrupção do abastecimento ocorre a contaminação da
rede. Essa conclusão embasa o resultado de ausência de associação entre
intermitência no abastecimento de água e diarreia infantil, no contexto da presente
pesquisa. Mostra-se importante destacar, por fim, a baixa confiabilidade das
informações relativas à intermitência de água (ANEXO K), o que limita ainda mais as
associações que se poderiam concluir do estudo.

5.3.1.3- CONSUMO

A análise relativa à associação entre o consumo de água e a ocorrência de diarreia
viu-se prejudicada pelo elevado índice de perdas de dados de hidrometração (52%),
exigindo a imputação de alguns valores, de modo a possibilitar a análise com uma
amostra mais representativa do universo pesquisado.

Conforme apresentado na seção 4.7, dentre os dados levantados encontra-se
associação, através do teste t, entre diarreia e o consumo "per capita", quando, para
as economias não hidrometradas, é fixado um consumo mensal de 7 ou de 10 m³. O
mesmo resultado é obtido na análise de tendência para o nível sócio-econômico
inferior, enquanto que, para o nível sócio-econômico superior, a associação é
identificada apenas quando se atribui um consumo mensal de 7 m³ para as
economias não hidrometradas.
A associação entre consumo "per capita" e diarreia tem sido relatada (VICTORA et al., 1986; ESREY et al., 1989). ESREY et al. (1990), revisando 15 estudos que avaliaram o impacto da quantidade de água, independentemente da sua qualidade, sobre a saúde, verificaram que em 14 deles foi reportado impacto positivo. Na referida revisão, a redução mediana na morbidade por diarreia, em sete dos estudos, foi de 27%. Os autores afirmam que "após a disposição de excretas, a próxima intervenção mais efetiva é tomar mais água disponível e mais acessível, de maneira que a população esteja mais apta a manter-se e ao ambiente doméstico limpos".

Tais conclusões, no entanto, referem-se a uma realidade muito distinta da realidade urbana brasileira. Em estudo realizado em Lesoto, ESREY et al. (1992) determinaram consumos "per capita" inferiores a 10 l/hab.dia, mesmo em locais que receberam sistemas melhorados de abastecimento de água. McJUNKIN (1986) recomenda como apropriado um consumo entre 40 e 60 l/hab.dia, faixa de valores que afirma já demonstrar um impacto positivo sobre a saúde após sua implementação. Por outro lado, o USAID (1982), citado por ESREY & HABICHT (1986), defende um consumo entre 20 e 40 l/hab.dia. Esses últimos autores comentam que atingir aqueles "altos (sic) valores não deve ser necessário e pode ser dispensioso".

No caso em questão, o valor médio do consumo "per capita" situou-se entre 107 e 155 l/hab.dia, dependendo do critério adotado, provavelmente bastante superior aos valores avaliados pelas diversas pesquisas disponíveis.

Embora não conclusiva a pesquisa realizada sobre o efeito do consumo "per capita", sobretudo devido à diferença de fontes entre doença e exposição, a análise revela-se extremamente importante, em vista da inexistência de trabalhos similares para a realidade brasileira. Para esse fim, no entanto, mostra-se provavelmente mais adequado o desenvolvimento de um estudo de corte transversal, onde a origem da amostra seja um número aleatório de moradias micromedidas, nas quais o consumo domiciliar tenha se apresentado consistentemente estável nos meses precedentes à investigação. Tal modalidade de estudo poderia contribuir inclusive com a definição de níveis limiares de consumo "per capita", abaixo dos quais seriam verificados impactos importantes sobre a saúde.
5.3.1.4- RESERVATÓRIO DOMICILIAR

O papel do reservatório domiciliar na incidência da diarreia foi avaliado segundo três principais aspectos: a existência ou não do reservatório, a sua adequação sanitária, representada pela presença de cobertura, e a frequência de limpeza.

O modelo logístico não indicou influência da presença de cobertura ou da frequência de limpeza, mas apontou para a importância da presença do reservatório domiciliar. O risco relativo das soluções alternativas para o armazenamento da água, comparado com a categoria que possui reservatório coberto e com limpeza frequente, é, com os respectivos intervalos de confiança:

- armazenamento em vasilhame: 1,91 (1,01 - 3,60);
- nenhum armazenamento: 1,91 (1,37 - 2,67).

Com relação à ausência de associação entre a incidência de diarreia e a cobertura do reservatório domiciliar ou a frequência com que se verifica sua limpeza, era de se esperar resultado diferente. Isto porque uma recomendação sanitária habitual consiste nos cuidados quanto à estanqueidade e à proteção dessas unidades, consideradas em geral como o mais vulnerável ponto dos sistemas de abastecimento de água.

Uma provável hipótese para a não associação encontrada pode se relacionar com o comportamento dos agentes etiológicos da doença. Um reservatório desprotegido está sujeito ao contato de insetos e de outros macrópteron com sua água, bem como à introdução de microrganismos, por exemplo através da poeira ou dos próprios vetores. Todavia, conforme salientado na seção 2.2, a transmissão de uma doença infecciosa deve conciliar sobretudo a persistência e a multiplicação dos organismos com sua dose infecciosa. No caso específico da diarreia, a seguinte caracterização pode ser traçada:
TABELA 37
CARACTERÍSTICAS INFECCIOSAS DOS PRINCIPAIS AGENTES ETIOLÓGICOS DA DIARRÉIA

<table>
<thead>
<tr>
<th>ORGANISMO</th>
<th>PERSISTÊNCIA no ambiente</th>
<th>PERSISTÊNCIA na água</th>
<th>MULTIPLICAÇÃO NO AMBIENTE</th>
<th>DOSE INFECCIOSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>6 meses/1 ano</td>
<td>?</td>
<td>não</td>
<td>baixa</td>
</tr>
<tr>
<td>Bactérias</td>
<td>40 dias/1 ano</td>
<td>1 dia/1 mês</td>
<td>sim</td>
<td>média a alta</td>
</tr>
<tr>
<td>Protozoário (Giardia)</td>
<td>3 meses</td>
<td>16 / 32 dias</td>
<td>não</td>
<td>baixa</td>
</tr>
</tbody>
</table>

FONTE: adaptado de FEACHEM et al. (1980)

Observa-se, portanto, que, embora os microrganismos de interesse apresentem persistência suficiente para atingir as águas dos reservatórios de distribuição por diversas vias, os outros fatores podem exercer papel determinante. Assim, a ausência de multiplicação no ambiente dos vírus e da Giardia, a baixa persistência de algumas bactérias na água e a elevada dose infecciosa requerida pelas bactérias atuam em sentido contrário à possibilidade de transmissão da diarréia, ocasionada pela ausência de condições sanitariamente adequadas nos reservatórios domiciliares. Estudos vêm indicando tanto a associação entre ocorrência de bactérias indicadoras de poluição fecal na água e diarréia, como o estudo desenvolvido na França (ZMIROU et al., 1987), quanto a ausência de associação, como determinado na Nicarágua (GORSTER et al., 1991).

A associação positiva encontrada neste estudo aponta para a importância do armazenamento da água, em local distante dos pontos de utilização, e o risco de seu armazenamento em vasilhames. Por outro lado, o risco demonstrado pelo consumo direto da água da rua, sem reservação, está provavelmente associado à precariedade do fornecimento de água e da própria estrutura física da moradia.

5.3.2- ESGOTAMENTO SANITÁRIO

Duas importantes variáveis caracterizam a situação de esgotamento sanitário da amostra: a solução adotada para a disposição dos esgotos e a presença de esgoto escoando no arruamento. Para ambas, a análise univariada apontou um risco significativo para a ausência de rede pública, conforme sintetizado na TAB. 38.
TABELA 38
ESGOTAMENTO SANITÁRIO - RISCO RELATIVO NA ANÁLISE UNIVARIADA

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CATEGORIA</th>
<th>RR (IC a 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposição dos esgotos</td>
<td>rede pública</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>algum tipo de fossa</td>
<td>1,75 (1,43 - 2,13)</td>
</tr>
<tr>
<td></td>
<td>superfície da rua ou córrego</td>
<td>2,86 (2,04 - 4,01)</td>
</tr>
<tr>
<td></td>
<td>terreno</td>
<td>4,75 (2,20 - 10,47)</td>
</tr>
<tr>
<td></td>
<td>outro x rede pública</td>
<td>1,97 (1,63 - 2,37)</td>
</tr>
<tr>
<td>Existência de esgoto</td>
<td>escoando na rua</td>
<td>não x sim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,74 (2,27 - 3,32)</td>
</tr>
</tbody>
</table>

Na análise multivariada, porém, apenas a segunda variável permaneceu, com RR de 2,38 (1,87 - 3,03), tendo sido excluída a primeira, certamente devido à importante interdependência entre ambas (p = 0 no teste do \(\chi^2 \)).

A variável mantida no modelo logístico - *existência de esgoto escoando na rua* - de fato representa uma indicação mais adequada do risco de contato da criança com o efluente sanitário ou as águas servidas. A simples existência de ligação domiciliar da moradia à rede coletora não assegura a ausência de esgoto a céu aberto nas suas proximidades. Isto, devido à prática de se implantar apenas parcialmente rede coletora nas sub-bacias, conduzindo a que arruamentos de montante não tenham seus esgotos coletados, deixando de garantir o saneamento completo de vias localizadas a jusante. Alia-se a esse problema o fato de que, mesmo existindo o coletor público em um dado arruamento, apenas parte das moradias se interligam ao sistema.

Outra variável analisada, e da qual não se encontrou associação com a doença, foi a ocorrência de obstrução na rede coletora, quando esta existia. O resultado é explicado pelo fato de a exposição constituir-se em um risco episódico, não permanente, dificultando a identificação de associação em um estudo com o delineamento adotado. Lembre-se que a pergunta realizada indaga se é *comum a ocorrência de entupimento na rede da rua*, incluindo portanto na resposta afirmativa diferentes frequências de ocorrência.
Finalmente, a existência de córrego nas proximidades do domicilio mostra-se uma variável com comportamento atípico. Na análise univariada, a existência de córrego caracteriza um risco relativo estatisticamente não significativo de 1,14 (0,94 - 1,37). Por outro lado, no modelo logístico, para o subgrupo "esgotamento sanitário", a não existência de córrego passa a apresentar-se com risco relativo positivo, embora não significativo quando a variável é incluída no modelo juntamente com a disposição dos esgotos ou com esgoto escoando no arruamento, enquanto que, na presença simultânea dessas duas variáveis, a não existência de córrego é estatisticamente significativa, com o risco na mesma direção. A mesma tendência é verificada no modelo final, com RR de 1,57 (1,22 - 2,01).

A não existência de córrego está associada a um baixo nível sócio-econômico, apresentando uma elevada significância, no teste do χ^2, com a posse de televisor e a existência de cozinha, embora não mostrando associação com a condição de propriedade do imóvel. Demonstra também forte associação com a presença de mosquitos.

A inclusão dessa variável no modelo multivariado possivelmente exprime outras características do domicilio, não relacionadas ao risco de contato com a água do córrego, tais como aspectos de natureza urbanística. Em vista dessas considerações, optou-se por encarar a variável mais pela sua expressão enquanto fator de confusão, de que por seu significado de fator de exposição.

5.3.3- LIMPEZA PÚBLICA

A pesquisa sobre o manuseio dos resíduos sólidos domésticos abrangeu a análise de quatro distintos aspectos: a forma de acondicionamento do lixo, a solução dada para sua disposição, a frequência semanal da coleta pública, quando esta existia, e a disposição das fezes das fraldas.

Embora na análise univariada, e mesmo na análise de tendência para a frequência de coleta, todos os aspectos considerados caracterizem risco relativo significativo, o modelo final restringe os resultados. Nessa última análise, risco relativo estatisticamente significativo, a um nível de significância de 5%, foi observado para:
- acondicionamento em embalagem inadequada x acondicionamento em saco de lixo ou nenhum: 1,97 (1,55 - 2,50)
- disposição em lote vago ou córrego x disposição na rua com elevada frequência de coleta: 1,61 (1,11 - 2,34)
- não usar fraldas x disposição das fezes das fraldas em vaso ou fossa: 1,65 (1,21 - 2,24)
- disposição inadequada das fezes das fraldas x disposição das fezes das fraldas em vaso ou fossa: 1,50 (1,04 - 2,19)

Com relação ao acondicionamento, o estudo constatou a importância tanto de o lixo ser embalado em sacos apropriados, quanto de ser disposto imediatamente. Nesse último caso, a pesquisa sugere haver uma maior proteção para aquelas famílias que não embalam os resíduos, possivelmente mantendo-os por um tempo menor junto ao local de sua geração, em relação às que usam a embalagem inadequada do lixo.

Quanto à disposição, constatou-se a inadequação sanitária da prática de lançamento do lixo em lotes vagos ou em córregos. A importância de que os serviços municipais garantam uma coleta frequente - de pelo menos três vezes por semana - do lixo depositado nos arruamentos apresentou-se no limiar do nível de significância [RR = 1,33 (0,99 - 1,79); p = 0,063].

A vinculação dessas conclusões com o atual conhecimento científico prende-se notadamente à hipotética cadeia epidemiológica lixo-homem (FIG. 8). Nesta, observa-se o importante papel dos vetores mecânicos ou biológicos, o que vem a reforçar as conclusões obtidas, apontando na direção de se valorizar o afastamento do lixo de junto à moradia, minimizando sua presença nesses locais. Alguns estudos vêem comprovando essa hipótese, como o de EKANEM et al. (1991), que indicou um OR de 2,48 para a diarreia infantil, quando se verifica uma disposição inadequada do lixo, em um estudo caso-controle na Nigéria. O trabalho de GROSS et al. (1989) apontou associação semelhante após a implantação de um programa de saneamento em favelas de Belo Horizonte.

Por fim, no presente estudo, a análise sobre a disposição das fezes das fraldas das crianças indicou que o emprego do vaso ou da fossa para esse fim é protetor, com relação às crianças que não utilizam fralda e aquelas cujo destino das fezes das fraldas é realizada no lixo, no terreno, na rua, no tanque, no córrego ou na própria rede de esgotos.
Algumas estudos analisam o risco de diarréia infantil, relacionado à presença de fezes visíveis de crianças nas moradias e no pendomicílio, como o de BALTAZAR & SOLON (1989) nas Filipinas, que determinou um OR ajustado de 1,34 (0,93 - 1,92), e o de ALAM et al. (1989) em Bangladesh.

5.3.4- DRENAGEM PLUVIAL

As duas variáveis relacionadas às águas pluviais incluídas no estudo são a inundação do lote e a ocorrência de enxurrada. Dessas, a ocorrência de inundação do lote, independente da frequência, representa um risco relativo de 1,39 (1,09 - 1,76) em relação à sua não ocorrência.

Obviamente, lotes localizados em nível inferior ao do "grade" da rua ou ao dos lotes vizinhos estão vulneráveis à penetração de águas superficiais em seu interior, carreando consigo esgotos, lixo acumulado ou outras diferentes impurezas. Sob esse aspecto, portanto, pode ser interpretado o resultado obtido, o qual excluiu a variável relativa ao enxurrada do lote do modelo final, provavelmente porque a simples existência de depressões no lote está menos associada à presença de patogênicos que a possibilidade de sua inundação.

5.3.5- PRESENÇA DE VETORES

Dos quatro vetores pesquisados - moscas, mosquitos, baratas e ratos - apenas baratas e mosquitos apresentaram-se significativamente relacionados à diarréia, no modelo final. Na análise univariada, esses vetores caracterizaram os seguintes RR:

- Ratos: 2,08 (1,72 - 2,52)
- Baratas: 1,74 (1,45 - 2,09)
- Moscas: 1,59 (1,29 - 1,96)
- Mosquitos: 1,48 (1,23 - 1,78)

Na análise multivariada, o risco relativo referente à presença de baratas é de 1,40 (1,12 - 1,76) e a de mosquitos de 1,37 (1,08 - 1,73). Um fato merecedor de destaque é a baixa confiabilidade das informações sobre os vetores, conforme TAB. 39.
TABELA 39
ESTATÍSTICA DE CONFIABILIDADE PARA OS VETORES

<table>
<thead>
<tr>
<th>VETOR</th>
<th>CATEGORIAS MÚLTIPLAS</th>
<th>DICOTÔMICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nível de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>concordância</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratos</td>
<td>0,21 - 0,39</td>
<td>regular</td>
</tr>
<tr>
<td>Baratas</td>
<td>0,16 - 0,25</td>
<td>pobre - regular</td>
</tr>
<tr>
<td>Moscas</td>
<td>-0,05 - 0,27</td>
<td>nula - regular</td>
</tr>
<tr>
<td>Mosquitos</td>
<td>0,01 - 0,20</td>
<td>pobre - regular</td>
</tr>
</tbody>
</table>

Estudos epidemiológicos relacionando a presença de vetores e diarreia são escassos na literatura, existindo alguns que investigam o papel das moscas, como o de VATHANOPHAS et al. (1986) na Tailândia, que determinou associação com diarreia da ausência de cobertura dos alimentos, relacionando tal prática com a ação desses insetos, e o de U et al. (1992), que encontrou associação positiva da presença de moscas e diarreia persistente em Myanmar.

Com relação às baratas, evidências indicam que podem constituir vetores mecânicos ou biológicos de agentes da diarreia. Estes são recolhidos do lixo pelos insetos, em suas patas e outras partes do corpo, e transportados até os alimentos (OMS, 1992), sendo também esperado que possam ser albergados em seus organismos.

Quanto aos mosquitos, é importante salientar que inexistem relatos sobre sua associação com a diarreia (OMS, 1984). O gênero de mosquitos mais comum na região - da família Culicidae - não tem sido referido como vetor de agentes etiológicos da diarreia, tendo sua população facilitada pelo acúmulo de água poluída empoeçada. Uma hipótese para o resultado encontrado na pesquisa é a de que, apesar de ter havido um elevado cuidado no treinamento e acompanhamento dos entrevistadores, ainda tenham ocorrido problemas de classificação entre as variáveis moscas e mosquitos, já que, na nomenclatura popular local, é usual denominar de mosquitos as moscas domésticas. Essa possibilidade é reforçada pelos resultados do teste de confiabilidade, que demonstraram as menores concordâncias para esses dois vetores, dentre os quatro pesquisados.

Os demais vetores - ratos e moscas - podem albergar, mecânicamente, uma diversidade de agentes da diarreia (OMS, 1992).
Pelas razões expostas, a interpretação dos resultados sobre vetores fica dificultada, podendo-se, no entanto, inferir que: há evidências de que a presença de vetores relacionados à água empoçada, ao acúmulo de lixo e à existência de esgotos a céu aberto pode estar associada à incidência de diarreia infantil.

5.3.6- HÁBITOS HIGIÊNICOS

Os hábitos higiênicos investigados foram:

- preparação da água bebida pela criança;
- preparação das frutas e verduras utilizadas na alimentação da criança;
- higiene das mãos da criança antes da alimentação;
- higiene das mãos da criança após defecar.

Após todas as etapas da análise estatística, permaneceu significativa apenas a variável preparo de alimentos, com um risco relativo de 2,87 (1,61 - 5,10), referente à prática de não preparar ou de lavar os alimentos, comparada com o hábito de desinfetá-los com cloro, vinagre ou iodo. O papel dos alimentos como abrigo de microrganismos patogênicos tem sido sistematicamente constatado (CAIRNCROSS & FEACHEM, 1990), embora em Bangladesh não tenha sido determinada associação direta entre coliformes fecais nos alimentos e diarreia (HENRY et al., 1990). O estudo, portanto, revela a superioridade da prática de desinfecção dos alimentos, como forma de eliminação desses organismos, em relação à ausência de qualquer preparo ou à sua simples lavagem com água, nem sempre realizada com os cuidados devidos.

A caracterização apenas do hábito higiênico relativo ao preparo de alimentos, como risco para a diarreia, levanta a hipótese de que a identificação desse tipo de preocupação com a criança pode estar simbolizando o nível geral de práticas higiênicas, dedicado pela pessoa responsável por seus cuidados. Assim, a prática de desinfecção dos alimentos estaria sendo escolhida, pelo modelo estatístico final, para representar os cuidados higiênicos gerais com a criança.

O papel protetor das demais práticas higiênicas tem sido comprovado, como a higiene das mãos das mães em Bangladesh (ALAM et al., 1989; CLEMENS &
STANTON, 1987), a higiene das mãos das crianças nos Estados Unidos (LABORDE et al., 1993), em Myanmar (U et al., 1992) e em Bangladesh (HENRY & RAHIM, 1990) e a fervura da água em São Paulo (BLAKE et al., 1993). Além disso, em investigação realizada nas Filipinas, BALTAZAR et al. (1993) determinaram associação positiva com diarreia infantil de um conjunto de práticas sanitárias e higiênicas, englobando a limpeza do domicílio, a higiene da cozinha e as condições gerais da moradia.

5.4- DOS FATORES DE CONFUSÃO

Diversas variáveis foram estudadas, com vistas à identificação de possíveis fatores de confusão na associação entre diarreia e condições de saneamento. No presente estudo, não se caracteriza o sentido clássico de variável de confusão, já que diversas exposições de interesse, e não apenas uma ou duas, participam da análise. Desta forma, a relação de interdependência entre as próprias variáveis de exposição assumem característica similar à do conceito de confusão epidemiológica.

A investigação da presença de fatores de confusão processou-se inicialmente através da análise bivariada ou estratificada e posteriormente com a construção do modelo multivariado, conforme exposto na seção 3.9.

Na primeira abordagem, dado o elevado número de combinações, o procedimento permite apenas algumas definições preliminares de variáveis confundíveis, conforme metodologia descrita na seção 3.9.4. Ademais, a relação de confusão é verificada somente na presença das duas variáveis para as quais se analisa a estratificação, deixando-se de conhecer a influência das demais variáveis nessa relação.

Para a situação que se apresenta, o modelo multivariado destaca-se como um instrumento poderoso para a identificação daquelas variáveis explanatórias da incidência da doença em estudo. Nesse caso, exposições e confusões são avaliadas segundo a mesma hierarquia, determinando-se as variáveis significativamente associadas à diarreia, na presença do efeito de todos os fatores de interesse. É importante salientar que o emprego do modelo multivariado, em estudos caso-controle, tem se dirigido principalmente para a análise de uma ou duas exposições particulares e que o estudo de um número elevado de associações conduz a complexidades no seu desenvolvimento e interpretação (THOMPSON, 1994).
A estratégia adotada, contudo, de se nivelarem todas as variáveis na análise, sem nenhum grau de hierarquização, pode induzir à compreensão de que estão se desprezando importantes determinantes da doença, como aqueles de caráter social (LAURELL, 1982). Entretanto, dado o objetivo do trabalho – estabelecimento de prioridades de intervenção na área de saneamento –, o qual difere dos estudos que visam à determinação de fatores explanatórios para uma dada doença, a abordagem mostra-se defensável. Obviamente, a conclusão pela necessidade de intervenção na área de saneamento, como instrumento de melhoria da saúde infantil, não significa desconhecer a importância e a primazia da alteração das relações sociais, nessa perspectiva.

As variáveis que permaneceram no modelo final, além daquelas discutidas na seção 5.3, são as assinaladas na tabela a seguir, com os respectivos riscos relativos brutos - primitivamente demonstrados na análise univariada - e ajustados pela análise multivariada.

TABELA 40

VARIÁVEIS CONFUNDÍVEIS - RR BRUTOS E AJUSTADOS (IC A 95%)

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CATEGORIA</th>
<th>RRBRUTO</th>
<th>RRAJUSTADO (modelo sem modif. de efeito)</th>
<th>RRAJUSTADO (modelo com modif. de efeito)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núm. de crianças</td>
<td>continua</td>
<td>2,04</td>
<td>1,58</td>
<td>1,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1,67 - 2,48)*</td>
<td>(1,28 - 1,95)</td>
<td>(1,30 - 1,99)</td>
</tr>
<tr>
<td>Idade criança</td>
<td>continua</td>
<td>-</td>
<td>1,81</td>
<td>1,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1,63 - 2,02)</td>
<td>(1,64 - 2,03)</td>
</tr>
<tr>
<td>Religião mãe</td>
<td>não x sim</td>
<td>4,64</td>
<td>2,58</td>
<td>2,68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,32 - 9,50)</td>
<td>(1,16 - 5,65)</td>
<td>(1,21 - 5,92)</td>
</tr>
<tr>
<td>Posse geladeira</td>
<td>não x sim</td>
<td>3,39</td>
<td>1,41</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,71 - 4,24)</td>
<td>(1,12 - 1,76)</td>
<td>(1,03 - 1,86)</td>
</tr>
</tbody>
</table>

* (mais de 1 criança < 5 anos) x (uma criança < 5 anos)

Dos resultados, observa-se inicialmente uma tendência à redução dos valores pontuais e correspondentes limites do intervalo de confiança, dos riscos relativos brutos para os ajustados. Esta tendência deve-se ao fato de que o valor do risco relativo bruto incorpora uma parcela referente ao efeito de outras variáveis ou melhor explicado por elas. Tal efeito seria expurgado na análise multivariada, com a introdução de todas as variáveis em um mesmo modelo.
Das variáveis de confusão mantidas no modelo final, três referem-se à estrutura familiar: número de crianças abaixo de cinco anos que residem na casa, religião da mãe e idade da criança, sendo que o efeito desse último fator foi constatado em estudo desenvolvido nas favelas de Belo Horizonte (GROSS et al., 1989).

A quarta variável - posse de geladeira - reúne, ao mesmo tempo, um aspecto sócio-econômico e a prática de conservação de alimentos, podendo estar exprimindo ambos os efeitos. É oportuno observar que o modelo escolheu esta dentre sete variáveis definidas como expressão da natureza sócio-econômica familiar. A variável, contudo, não manifestou-se estaticisticamente associada à diarreia infantil, em investigação caso-controle realizada na Nigéria (EKANEM et al., 1991), o que pode ser atribuído a diferenças entre ambos os delineamentos.

Alguns outros fatores, não significativos na presente pesquisa, têm sido associados à diarreia, como instrução dos pais (GROSS et al., 1989) e tempo de amamentação (BLAKE et al., 1993; GARRIDO et al., 1990; GROSS et al., 1989). Esta última variável tem sua investigação prejudicada em delineamentos como o realizado, uma vez que há uma tendência cultural, por parte das mães, de interromper a amamentação quando da ocorrência de diarreia na criança, portanto ocasionando um bias no resultado.

5.5- DAS MODIFICAÇÕES DE EFEITO

Dentre as variáveis significativamente associadas com a diarreia, identificou-se modificação de efeito aditiva entre número de crianças com menos de 5 anos e disposição de lixo (RR = 4,43). Observaram-se ainda modificações de efeito multiplicativas entre escoamento de esgotos na rua e acondicionamento de lixo (RR = 2,17), entre limpeza de caixa d'água / armazenamento de água e presença de baratas (RR = 5,60 para ausência de cobertura na caixa) e entre presença de mosquitos e presença de baratas (RR = 1,67).

Tais resultados acentuam a importância do impacto conjunto da remoção das duas exposições envolvidas na modificação de efeito. Assim, a melhoria no acondicionamento do lixo associada à eliminação dos esgotos a céu aberto; a implantação de cobertura nos reservatórios associada à eliminação de baratas e a
eliminação simultânea de mosquitos e de baratas podem resultar em um impacto positivo mais significativo que o esperado pela conjunção de cada ação isolada, potencializando os benefícios.

5.6- DAS INFERÊNCIAS EPIDEMIOLÓGICAS

As associações estatísticas encontradas entre as diversas variáveis e diarréia infantil podem ser espúrias, indiretas ou causais (LIJENFELD & STOLLEY, 1994).

As associações apresentariam um caráter espúrio caso as suspeitas de bias configurassem uma dimensão tal que comprometesse fortemente os resultados encontrados. Conforme discutido na seção 5.1.1, apesar de toda a cautela metodológica no desenvolvimento de estudo, algumas possibilidades de bias podem ter ocorrido, notadamente aqueles típicos dos estudos caso-controle, envolvendo os bias de seleção de casos e de controles e os bias na estimativa da exposição. Entretanto, pelos diversos dados coletados e verificações realizadas, há uma significativa probabilidade de que essas eventuais distorções tenham se mantido em um nível adequado, não comprometedor dos resultados do estudo.

Por outro lado, o controle das associações entre exposições e doença pelas diversas variáveis, notadamente as características da estrutura familiar e as de natureza sócio-econômica, permite afirmar que, a nível do modelo multivariado final, todos os principais fatores de confusão estão contemplados. Fica minimizada, dessa forma, a hipótese de ocorrência de associações indiretas.

Cumpre, finalmente, discutir a causalidade das associações. HILL (1965) propôs critérios gerais para a avaliação da extensão com a qual evidências disponíveis suportam uma interpretação causal. Os denominados postulados de Hill tem sido questionados, seja pela seu conservadorismo e seu caráter positivista (ALMEIDA FILHO, 1989), seja por incluírem equivocos e critérios às vezes irrelevantes (ROTHMAN, 1986).

Entretanto, uma avaliação do cumprimento das condições estabelecidas por Hill, mesmo com a tônica de não serem os únicos critérios para a determinação da causalidade, contribui para essa análise. Sob esse ponto de vista, para as
exposições relacionadas às condições de saneamento, as seguintes considerações procedem:

- **Força da associação**
 As variáveis de exposição identificadas no estudo como fator de risco para a diarreia - adotando-se aquelas incluídas no modelo multivariado -, apresentaram a magnitude do risco relativo variando entre 1,37 e 2,87. Embora algumas mostrem RR inferior a 1,5, como a ocorrência de inundação no lote, a presença de mosquitos e a presença de baratas, outras caracterizam valores pontuais superiores a 2, como a existência de esgotos escoando na rua e a ausência de desinfecção de frutas e verduras.

É importante destacar que uma fraca associação não descarta uma conexão causal (ROTHMAN, 1986).

- **Efeito dose-resposta**
 Das variáveis incluídas no modelo final, apenas para três delas é pertinente a análise de tendência: frequência de inundação do lote, frequência de aparecimento de mosquitos e frequência de aparecimento de baratas. Em todas elas, a análise de tendência apresentou-se estatisticamente significativa, com p < 0,001, fortalecendo, portanto, a evidência causal dessas variáveis.

Em contrapartida, para as demais exposições estatisticamente significativas na análise de tendência, porém descartadas na análise final, pode-se eliminar a hipótese de causalidade, sob o argumento de que fatores de confusão são responsáveis por uma distorção no resultado da análise de tendência.

- **Ausência de ambigüidade temporal**
 Na metodologia adotada para o levantamento dos dados de exposição em casos e controles, a entrevista domiciliar inquiriu a respeito da prevalência da exposição no presente, objetivando garantir uma elevada validade da informação. Tal estratégia partiu do pressuposto de que condições de saneamento e hábitos higiênicos refletem estados de longa duração e de lenta alteração. Acredita-se, portanto, ser muito improvável a hipótese de que, em algumas circunstâncias, a exposição considerada não tenha precedido a ocorrência de diarréia.
■ Consistência da associação

A consistência dos achados com pesquisas anteriores, que tenham identificado associações similares, procede para as variáveis relativas à solução para os esgotos, a disposição de fezes das fraldas, a disposição do lixo e hábitos higiénicos, conforme destacado na seção 5.3. Para as demais variáveis, como a presença de baratas e de mosquitos, a ausência de reservatório domiciliar e a ocorrência de inundação, não se localizaram registros na literatura, relacionando-as com manifestações de saúde compatíveis com a morbidade por diarreia. A ausência de replicação dos dados na literatura, no entanto, “não descarta uma associação causal, porque alguns efeitos são produzidos por suas causas apenas sob circunstâncias incomuns” (ROTHMAN, 1986).

■ Plausibilidade biológica

A vinculação causal das condições de saneamento e dos hábitos higiénicos com os agentes etiológicos da diarreia representa um conhecimento bem consolidado na atualidade, conforme exposto nas seções 2.1 e 2.2. Para os fatores de exposição estabelecidos neste estudo, a seção 5.3 discute a sua relação específica com a cadeia causal da diarreia.

■ Coerência

A coerência de uma evidência é verificada quando os resultados não se conflitam seriamente com o conhecimento da história natural da doença ou com outros fatos conhecidos sobre a ocorrência da doença, como tendências seculares (KLEINBAUM et al., 1982). Na verdade, o critério confunde-se com o da plausibilidade biológica (ROTHMAN, 1986), sendo que os aspectos salientados no item anterior aplicam-se também a este.

■ Especificidade da associação

Significa que quando um fator estudado está associado a apenas uma doença, fica fortalecida a hipótese causal. Este critério tem sido objeto de reservas, que atualmente conduzem à sua desconsideração enquanto parâmetro de causalidade, dada à cotidiana constatação da multiplicidade de efeitos de um único evento (ROTHMAN, 1986).

Dois outros critérios de causalidade propostos por Hill - evidência experimental e analogia - quer pela sua não aplicabilidade à maioria dos estudos epidemiológicos, quer por sua irrelevância, atualmente têm sido desprezados.
Os aspectos analisados, guardadas as ressalvas apresentadas, contribuem para fortalecer a constatação da relação causal entre as diversas exposições caracterizadas como significativas e a diarreia infantil. Para algumas dessas variáveis, teria sido até supérfluo um estudo como o desenvolvido, apenas objetivando demonstrar causalidades já sobejamente determinadas nos diversos estudos historicamente realizados, relacionando saneamento e saúde. Entretanto, a reunião de um número maior de argumentos, no sentido de se consolidar os resultados do estudo, são fundamentais para o fortalecimento das conclusões relativas à fixação de prioridades de intervenção - objeto final da pesquisa.

5.7- CONSIDERAÇÕES RELATIVAS À PROPOSIÇÃO DE PRIORIDADES DE INTERVENÇÃO

Um dos objetivos fundamentais do presente estudo consiste no aprimoramento de uma metodologia capaz de instrumentalizar a tomada de decisões em saneamento, no tocante à fixação de prioridades de intervenção. Neste ponto, selecionadas aquelas variáveis de exposição significativamente associadas à enfermidade eleita como indicadora, cumpre ordená-las, em termos da magnitude do impacto passível de ser obtido mediante a correspondente intervenção.

A aludida ordenação pode ser realizada, pelo menos, por quatro diferentes critérios:

- pela magnitude do risco relativo, comparando a força da associação das exposições com a doença;

- pela magnitude do risco atribuível, avaliando a parcela da doença na população, evitável pela redução ou eliminação da exposição (COUGHLIN et al., 1994);

- pelo coeficiente padronizado do modelo logístico (β'), correspondente ao produto $\hat{\beta}\sqrt{\text{var}(x)}$ (TRUETT et al., 1967), sendo $\hat{\beta}$ o coeficiente do modelo logístico, equivalente ao logaritmo neperiano de RR;
pel coeficiente $\beta \Delta x$, no modelo logístico, sendo Δx a alteração na magnitude da variável x afetada por um determinado valor padrão de investimentos (SNEDECOR & COCHRAN, 1980).

O terceiro critério tem por objetivo uniformizar os valores do RR, de tal forma a torná-los comparáveis, em termos de uma unidade padronizada de alteração na exposição, sendo considerado por SCHLESSELMAN (1982) como uma adequada metodologia para relativizar as importâncias das variáveis.

Por outro lado, extrapola os limites da presente pesquisa uma abordagem sobre custos de intervenções, exigido pelo quarto critério. Tal levantamento demandaria uma metodologia extremamente cuidadosa, dados os diversos e complexos fatores que afetam a composição dos custos das obras e serviços públicos no Brasil.

Em vista disso, apresenta-se na TAB. 41 a ordenação das possíveis intervenções sanitárias e ambientais, segundo os três primeiros critérios.
TABELA 41
ORDENACAO DAS INTERVENÇÕES SEGUNDO A MAGNITUDE DO RR, DO RA E DO COEFICIENTE PADRONIZADO β’

<table>
<thead>
<tr>
<th>INTERVENÇÃO</th>
<th>CRITÉRIO 1 (magnitude do RR(1))</th>
<th>CRITÉRIO 2 (magnitude do RA(2))</th>
<th>CRITÉRIO 3 (coeficiente padronizado(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR</td>
<td>ordem</td>
<td>RA (%)</td>
</tr>
<tr>
<td>Desinfeção de frutas e verduras</td>
<td>2,87</td>
<td>1</td>
<td>77,32</td>
</tr>
<tr>
<td>Eliminação dos esgotos escovando na rua</td>
<td>2,38</td>
<td>2</td>
<td>33,79</td>
</tr>
<tr>
<td>Acondicionamento do lixo nos sacos apropriados</td>
<td>1,97</td>
<td>3</td>
<td>47,06</td>
</tr>
<tr>
<td>Eliminação da prática de se armazenar água em vasilhames</td>
<td>1,91</td>
<td>4</td>
<td>18,79</td>
</tr>
<tr>
<td>Implantação de reservatório onde a água é utilizada diretamente da rua</td>
<td>1,91</td>
<td>5</td>
<td>5,56</td>
</tr>
<tr>
<td>Eliminação da disposição do lixo em córrego e lotes vagos</td>
<td>1,61</td>
<td>6</td>
<td>13,71</td>
</tr>
<tr>
<td>Orientação para a disposição das fezes dasfraídas se dar nos vasos ou nas fossas</td>
<td>1,50</td>
<td>7</td>
<td>18,84</td>
</tr>
<tr>
<td>Estímulo ao uso de geladeiras</td>
<td>1,41</td>
<td>8</td>
<td>26,19</td>
</tr>
<tr>
<td>Redução da presença de baratas, de pelo menos 3 meses/ano para no máximo 1 mês/ano</td>
<td>1,40</td>
<td>9</td>
<td>27,02</td>
</tr>
<tr>
<td>Eliminação da inundação nos lotes</td>
<td>1,39</td>
<td>10</td>
<td>23,20</td>
</tr>
<tr>
<td>Redução da presença de mosquitos, de todo o ano para no máximo seis meses/ano</td>
<td>1,37</td>
<td>11</td>
<td>21,24</td>
</tr>
</tbody>
</table>

(1) análise multivariada.
(2) análise univariada.
Para a proposição de prioridades dentre as intervenções incluídas na TAB. 41, é necessário se revisar o significado dos três parâmetros, nesse contexto.

O valor do risco relativo representa a redução no risco de acometimento de diarreia em cada criança submetida à exposição em análise, após recebida a intervenção. Assim, por exemplo, a criança que vive em uma moradia em cujo arruamento existe esgoto escoando a céu aberto passaria a ter 2,38 menos chance de ser acometida de diarreia, caso houvesse a eliminação dessa exposição.

Já o valor do risco atribuível traduz um componente populacional, significando a parcela da incidência da doença na população, redutível caso a exposição fosse removida. No exemplo anterior, 33,79% da incidência de diarreia infantil em Betim deixaria de ser verificada, caso fosse eliminada a presença de esgotos escoando a céu aberto, em toda a parcela de 29,25% da população que relata esse fato nos arruamentos onde vive.

Portanto, o risco relativo exprime um valor individual ou unitário, enquanto o risco atribuível considera o efeito populacional da intervenção, em ambos os casos para a mudança na categoria da exposição. Dessa forma, a comparação dos valores do risco atribuível introduz na análise o componente populacional, desnaturizando o esforço necessário em cada intervenção. Em outras palavras, o esforço necessário para eliminar os esgotos escoando a céu aberto nos 29,25% dos arruamentos de Betim tem uma dimensão não comparável com a mudança no hábito de acondicionar o lixo em embalagens diferentes do saco apropriado, o que é praticado por 50,50% da população. É verdadeiro também que o esforço, ou o custo, envolvido na mudança unitária em cada uma dessas exposições também não é idêntico. Porém ocasiona uma distorção menor na análise. Essas constatações resultam numa conclusão paralela, de que o quarto critério proposto para a fixação de prioridades de intervenção representa a mais adequada abordagem, por padronizar o custo unitário da intervenção.

O terceiro critério, por sua vez, uniformiza os valores de RR, segundo a variância verificada pelas diversas observações, colocando nas mesmas bases de comparação os valores do risco relativo.

Em vista dessas considerações, optou-se por privilegiar, no presente trabalho, a magnitude e o coeficiente padronizado do RR, como parâmetros para a proposição
de prioridades de intervenção. Entretanto, além de uma análise quantitativa, ao se analisar as intervenções sob o ponto de vista das ações a serem empreendidas pelo poder público, identificam-se dificuldades em encará-las como intervenções isoladas. Isto, porque diversas se resumem em uma ação educativa ou orientativa e outras não podem dispensar, complementarmente, um componente de educação sanitária. Em outros casos, há uma interrelação entre as ações, como entre o controle de baratas, o manejo do lixo e a disposição adequada dos esgotos. Assim, apresenta-se a seguir uma proposição de prioridades de intervenção:

1. Ação de educação sanitária, enfatizando:
 - a higiene e conservação dos alimentos;
 - o manuseio do lixo, orientando quanto ao seu acondicionamento e disposição adequados;
 - o manuseio da água, em especial orientando quanto ao risco da reserva em vasilhames;
 - a disposição das fezes das fraldas das crianças preferencialmente em vasos;
 - orientação quanto ao controle de baratas e outros vetores no domicílio e no peridomicílio.

2. Implantação de soluções adequadas para a disposição dos esgotos, como rede coletora e fossas apropriadas, visando à eliminação de efluentes sanitários a céu aberto nos arruamentos.

3. Atribuição, em programas de melhorias habitacionais, de ênfase à implantação de reservatórios domiciliares.

4. Melhoria no sistema de limpeza urbana, com aumento da área de abrangência da coleta e orientação quanto ao uso dos sacos apropriados de lixo.

5. Implantação de obras de controle de inundações nos lotes, através de unidades de drenagem pluvial.

A indicação de prioridade para ações de educação sanitária encontra respaldo em investigações que comprovam sua eficácia, em termos de efetiva melhoria dos hábitos higiénicos da população, a exemplo do trabalho realizado na Tailândia (PINFOLD, 1990). Nesta investigação, intervenções de educação sanitária
traduziram-se em menor contaminação da água e dos dedos das mãos das pessoas investigadas e em melhor limpeza dos utensílios de cozinha. Quanto aos resultados das intervenções, em Bangladesh (STANTON & CLEMENS, 1987), um conjunto de ações de educação sanitária propiciaram uma redução na incidência de diarreia.

5.8- PROPOSTA DE UM Delineamento Epidemiológico Alternativo APLICÁVEL AO PLANEJAMENTO NA ÁREA DE SANEAMENTO

5.8.1- AVALIAÇÃO CRÍTICA DO Delineamento EMPREGADO

O delineamento planejado para o trabalho enfrentou dificuldades próprias da inexistência de referências de uma abordagem de natureza similar. Dos diversos estudos publicados - seção 2.3 - , a maior parte possui a intenção de avaliação de programas, como por exemplo a investigação de AZIZ et al. (1990), enquanto outros pretendem a simples identificação de associações epidemiológicas entre condições de saneamento e um ou mais indicadores de saúde, como em BIRKHEAD & VOGT (1989). Embora os estudos caso-controle estejam tendendo gradativamente a predominar como método epidemiológico, não se localizaram estudos empregando a variante caso-coorte.

Na grande maioria dos estudos, ainda, condições de abastecimento de água e de esgotamento sanitário, além de hábitos higiénicos em alguns casos, são as exposições pesquisadas. Raramente, um elevado conjunto de variáveis de exposição é avaliado nos estudos analíticos publicados. Ademais, a abordagem mais frequente consiste na análise de variáveis de exposição apenas dicotômicas.

Uma outra dificuldade encontrada, em termos de ausência de referencial, é a de que a maioria dos trabalhos avaliam situações de saneamento mais próximas da realidade rural brasileira, como a confrontação entre presença de poços rasos e fontes desprotegidas (MERTENS et al., 1990) ou a comparação entre a existência ou não de fossas (GUERRANT et al., 1983).
Por fim, o relato de um número muito reduzido de estudos epidemiológicos de condições de saneamento, desenvolvidos para a realidade brasileira, completa o quadro de carência de referências prévias para o planejamento e o desenvolvimento da pesquisa.

Em vista dos fatores precedentes, estabeleceu-se um certo grau de incerteza e de sensibilidade pessoal na elaboração do delineamento. Tal imprecisão influenciou diversas premissas do trabalho, como o tamanho da amostra, as variáveis confundíveis necessárias, as variáveis de exposição importantes de serem levantadas e o universo de categorias das variáveis, além da própria análise estatística, em especial quanto ao conhecimento prévio de potenciais confusões e modificações de efeito.

A ausência de referências anteriores provocou ainda uma tendência a se trabalhar com a maior abrangência factível, de modo a possibilitar uma avaliação final das possibilidades de simplificação do delineamento, ao contrário do risco de se constatar lacunas ou necessidades de ampliação do estudo, o que redundaria em resultados não conclusivos, quanto a uma proposta metodológica passível de ser operacionalizada. Nesse sentido, o próximo item apresenta sugestões para um delineamento mais simplificado e com maior factibilidade de emprego, aplicável ao planejamento na área de saneamento.

5.8.2- CONSIDERAÇÕES RELATIVAS A UM POSSÍVEL DELINEAMENTO CASO-CONTROLE SIMPLIFICADO

Este estudo, desde seu planejamento até os resultados obtidos, permite vislumbrar um delineamento caso-controle mais simplificado, caracterizando custo e duração mais reduzidos, com as seguintes características:

- **Seleção dos casos**

 A adoção de morbidade diarreica infantil como variável indicadora do efeito da ausência de saneamento já representa um procedimento bastante consolidado e com suficiente consistência científica (BRISCOE et al., 1986). Não se configuram razões para o abandono de tal critério de seleção dos casos.
Seleção dos controles
A escolha da amostra controle pode se subordinar à disponibilidade de registros confiáveis do universo de moradias da área a ser abrangida. Caso prevaleça essa situação, o emprego do método caso-coorte pode ser vantajoso, na medida em que propicia facilidades de natureza logística para o trabalho. Em caso contrário, a adoção de um controle hospitalar, como crianças com traumatismos ou doenças respiratórias (DANIELS et al., 1990a), parece ser a solução mais recomendada.

Variáveis de exposição
Considerando que o objetivo da investigação é o de estabelecimento de prioridades de intervenção, o levantamento de um amplo espectro de exposições, tal como adotado neste estudo, mostra-se conveniente. Deve-se procurar implementar um maior controle na validação das informações, como a observação sobre a existência de filtros domiciliares, geladeiras, condições de peridomicílio, etc.

Variáveis confundíveis
O presente estudo demonstrou uma perspectiva concreta de restrição do universo de variáveis confundíveis necessárias. Uma possibilidade é o registro de duas ou três variáveis relacionadas à estrutura familiar e igual número de informações relativas à condição sócio-económica da família. Dessa forma, o entrevistador terá condições de se dedicar melhor à qualidade das informações sobre a exposição.

Fixação das categorias das variáveis
A estratificação das variáveis de exposição segundo múltiplas categorias raramente enriquece a informação sobre o risco, na perspectiva de instrumentalizar intervenções. Por esse motivo, mesmo que o protocolo a ser empregado inclua diversas opções de resposta para as variáveis, a análise estatística, sobretudo a multivariada, e o dimensionamento da amostra podem considerá-las dicotômicas.

Dimensão da amostra
Conforme discutido na seção 5.1.2, uma amostra de 500 a 600 casos e igual número de controles pode ser suficiente. Uma variação que pode ser levada em conta consiste na adoção de mais de um controle por caso. Isto pode ser importante em estudos onde a área abrangida possua população muito inferior a
investigada, o que implicaria em um período de tempo muito prolongado para a coleta dos casos.

Admitindo-se, por exemplo, uma população de 40.000 habitantes, a coleta de 500 casos demandaria um período de cerca de sete meses, considerando uma correspondência linear com a incidência de diarreia encontrada neste estudo. A adoção, no entanto, de uma relação de dois controles por caso, conduziria a uma amostra de aproximadamente 360 casos e 720 controles, dependendo dos valores da prevalência da exposição em ambos os grupos. A nova situação reduziria em cerca de 30% o tempo necessário para a coleta dos casos.

- **Análise estatística**

A sequência adotada na análise estatística do presente estudo mostrou-se adequada, conduzindo a uma gradativa compreensão das associações envolvidas. Uma etapa que talvez possa ser simplificada é a da análise bivariada. Dado o elevado número de combinações duas a duas entre as variáveis, essa etapa apresenta-se trabalhosa e fornece informações restritas sobre a ocorrência de confusão e de modificação de efeito. Seria mais adequado, sob esse aspecto, o desenvolvimento da análise estratificada após a construção do modelo multivariado, apenas com as variáveis ali incluídas e visando somente a inspeção das eventuais modificações de efeito aditivas.
A avaliação da associação entre condições de saneamento e diarreia em crianças de até cinco anos, na cidade de Betim-MG, após analisados possíveis vieses metodológicos, conduz às seguintes exposições estatisticamente relacionadas à doença, com os respectivos riscos relativos:

- Desinfecção de frutas e verduras 2,67
- Eliminação dos esgotos escoando na rua 2,38
- Acondicionamento do lixo nos sacos apropriados 1,97
- Eliminação da prática de se armazenar água em vasilhames 1,91
- Implantação de reservatório onde a água é utilizada diretamente da rua 1,91
- Eliminação da disposição do lixo em córrego e lotes vagos 1,61
- Orientação para a disposição das fezes das fraldas se dar nos vasos ou nas fossas 1,50
- Estímulo ao uso de geladeiras 1,41
- Redução da presença de baratas, de pelo menos 3 meses/ano para no máximo 1 mês/ano 1,40
- Eliminação da inundações nos lotes 1,39

A diminuição da presença de mosquitos também revelou-se significativa, do ponto de vista estatístico. Manifestou-se um risco relativo de 1,37, correspondente à redução da presença do inseto, de todo o ano para no máximo seis meses no ano. Esse resultado não encontra sustentação científica, já que não há qualquer referência sobre a transmissão de enfermidades diarréicas através de mosquitos. Pode estar refletindo duas diferentes ocorrências: uma associação indireta entre diarréia e a insalubridade do ambiente - existência de empoçamento de águas poluídas, por exemplo - ou a baixa confiabilidade das respostas ao inquérito, por confusão entre os termos mosquitos e moscas, devido à terminologia local.

A discussão dos resultados do estudo epidemiológico, na perspectiva de estabelecimento de prioridades de intervenção sob o ponto de vista da saúde pública, indica a seguinte ordem de prioridades:
Ação de educação sanitária, enfatizando:

- a higiene e conservação dos alimentos;
- o manuseio do lixo, orientando quanto ao seu acondicionamento e disposição adequados;
- o manuseio da água, em especial orientando quanto ao risco da reserva em vasilhames;
- a disposição das fezes das fraldas das crianças preferencialmente em vasos;
- orientação quanto ao controle de baratas e outros vetores no domicílio e no perídomicílio.

Implantação de soluções adequadas para a disposição dos esgotos, como rede coletora e fossas apropriadas, visando à eliminação de efluentes sanitários a céu aberto nos arruamentos.

Atribuição, em programas de melhorias habitacionais, de ênfase à implantação de reservatórios domiciliares.

Melhoria no sistema de limpeza urbana, com aumento da área de abrangência da coleta e orientação quanto ao uso dos sacos apropriados de lixo.

Implantação de obras de controle de inundações nos lotes, através de unidades de drenagem pluvial.

Em função da avaliação crítica da metodologia adotada, verifica-se a possibilidade da formulação de um delineamento mais simplificado, aplicável a realidades urbanas similares à de Betim-MG, com o objetivo de definição de prioridades de investimentos públicos em saneamento. Tal delineamento, empregando o método caso-controle, apresentaria as características principais expostas a seguir.

- Dimensão da amostra

Uma amostra de aproximadamente 550 casos e igual número de controles pode ser adotada. Caso a área abrangida pela pesquisa possua população inferior a 60.000 habitantes, pode ser considerado o emprego de dois controles por caso, permitindo um período de tempo inferior a cinco meses para a coleta dos casos. Nessa hipótese, uma amostra de cerca de 400 casos e 800 controles seria recomendável.
Seleção dos casos

Sugere-se manter a definição de casos adotada nesta pesquisa: criança com até cinco anos de idade, residente na área em avaliação, atendida em instituição de saúde, com relato de diarreia.

Seleção dos controles

A escolha da amostra controle deve se subordinar à disponibilidade de registros confiáveis do universo de moradias da área a ser abrangida. Prevalecendo essa situação, o emprego do método caso-coorte pode ser vantajoso. Nesse caso, controle seria definido como: criança com até cinco anos de idade, aleatoriamente escolhida no universo da população residente na área em avaliação. Em caso contrário, a adoção de um controle hospitalar constitui a solução mais recomendada, como a definição: criança com até cinco anos de idade, residente na área em avaliação, atendida em instituição de saúde, com traumatismos ou doenças respiratórias.

Protocolo

Os modelos de protocolo adotados na presente pesquisa (ANEXOS A e B) devem ser adotados como referências. Além da adaptação dos modelos à situação específica, deve-se procurar implementar um maior controle na validação das informações sobre as exposições, como a observação sobre a existência de filtros domiciliares, geladeiras, condições do peridomicílio, etc. Mostra-se também possível uma simplificação do universo de variáveis de confusão necessárias, como o registro de apenas duas ou três variáveis relacionadas à estrutura familiar e igual número de informações relativas à condição sócio-econômica da família.

Análise estatística

A sequência adotada na análise estatística do presente estudo é adequada, desenvolvendo-se sequencialmente a distribuição de frequências entre casos e controles e as análises univariada, bivariada e multivariada. Esta metodologia conduz a uma progressiva compreensão das associações envolvidas. Uma etapa que talvez possa ser simplificada ou mesmo eliminada é a da análise bivariada. Para a fixação da ordem de prioridades, o coeficiente logístico padronizado pelo desvio padrão e o coeficiente logístico padronizado pelo valor padrão de investimentos devem exercer papel determinante.
Equipe

A coordenação da pesquisa pode perfeitamente ser exercida por profissional da equipe técnica de prefeituras municipais relativamente organizadas. Preferencialmente, deve ser um profissional da área de saúde, com vocação para trabalhos de pesquisa. Um imperativo para o sucesso do empreendimento é o envolvimento da equipe responsável pelas ações de saneamento no município. Para a realização das entrevistas, objetivando evitar uma interferência com rotina dos serviços, é conveniente a contratação temporária de entrevistadores. A participação de um profissional externo especializado em Epidemiologia, na qualidade de consultor, mostra-se essencial em todas as etapas do trabalho, sobretudo em seu planejamento e na fase de análise estatística.
7- ANEXOS
7.1- **ANEXO A**

PROTOCOLO PARA OS CASOS
PESQUISA UFMG
SAÚDE E CONDIÇÕES DE MORADIA EM BETIM

Explique, para o adulto que o atender, os objetivos da entrevista.

Após definida a pessoa a ser entrevistada, preencha os dados abaixo, leia em voz alta o TERMO DE ACEITAÇÃO, assine-o, data-o e colete a assinatura, em duas vias.

DADOS SOBRE O ENTREVISTADO

NOME .. POSIÇÃO NA FAMÍLIA
RUA .. Nº BAIRRO
REFERÊNCIA PARA LOCALIZAÇÃO DA CASA ..

TERMO DE ACEITAÇÃO

Esta pesquisa da Universidade Federal de Minas Gerais tem por objetivo analisar a situação de moradia e de saneamento da população de Betim e com isso fornecer dados para a melhoria dessas condições.

Eu estou de acordo em participar da pesquisa, entendendo que essa participação significa responder a perguntas, sobre a casa onde vivo e os seus moradores, e mostrar algumas instalações na casa e no lote. Estou ciente que as informações coletadas serão tratadas confidencialmente, sendo que eu, nem a casa, seremos identificados durante a análise das informações e a divulgação dos resultados da pesquisa. O trabalho envolve a entrevista de cerca de 2.000 pessoas e minhas respostas serão combinadas com as dos outros participantes, para a análise dos totais.

-- -- ---------
Assinatura do participante Assinatura do entrevistador Data

-- -- ---------

TERMO DE ACEITAÇÃO

Esta pesquisa da Universidade Federal de Minas Gerais tem por objetivo analisar a situação de moradia e de saneamento da população de Betim e com isso fornecer dados para a melhoria dessas condições.

Eu estou de acordo em participar da pesquisa, entendendo que essa participação significa responder a perguntas, sobre a casa onde vivo e os seus moradores, e mostrar algumas instalações na casa e no lote. Estou ciente que as informações coletadas serão tratadas confidencialmente, sendo que eu, nem a casa, seremos identificados durante a análise das informações e a divulgação dos resultados da pesquisa. O trabalho envolve a entrevista de cerca de 2.000 pessoas e minhas respostas serão combinadas com as dos outros participantes, para a análise dos totais.

-- -- ---------
Assinatura do participante Assinatura do entrevistador Data
PESQUISA UFMG

SAÚDE E CONDIÇÕES DE MORADIA EM BETIM

RESPOSTAS PADRONIZADAS NESTE QUESTIONÁRIO
0 = NÃO SABE
1 = SIM
2 = NÃO
8 = NÃO SE APLICA
9 = NÃO QUIS RESPOSTER OU MOSTRAR.

Nome do entrevistador: ... ____________ (80)

Pessoas que vivem na casa

(1) A mãe vive na casa? ____ (0, 1, 2 ou 9).

(2) Quando nasceu a mãe? / / (DD/MM/AA) ou idade de anos ____ (0, 8 ou 9).

(3) O pai vive na casa? ____ (0, 1, 2 ou 9).

(4) Quantos filhos maiores de 5 anos completos vivem na casa? ____

(5) Quantas crianças entre 5 e 14 anos completos vivem na casa? ____

(6) Qual é o número de outros adultos (maior de 14 anos completos) que vivem na casa? ____

Especificar: ..

(7) Quais são os nomes e as idades das crianças com menos de 5 anos completos? Preencha pela ordem de nascimento:

<table>
<thead>
<tr>
<th>PRIMEIRO NOME</th>
<th>IDADE anos</th>
<th>IDADE meses</th>
<th>PRIMEIRO NOME</th>
<th>IDADE anos</th>
<th>IDADE meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td></td>
<td></td>
<td>6-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-</td>
<td></td>
<td></td>
<td>7-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-</td>
<td></td>
<td></td>
<td>8-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-</td>
<td></td>
<td></td>
<td>9-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-</td>
<td></td>
<td></td>
<td>10-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(8) A entrevista será sobre a criança de número ____.

AS QUESTÕES SEGUINTESE REFEREM-SE APENAS A ESSA CRIANÇA

(9) Sexo ____ 1 __ ____ 2 __
MASC. FEM.

(10) Qual é a data de nascimento? / / (DD/MM/AA) ____ (0 ou 9).
(11) A criança amamentou, mesmo com complementação, durante quanto tempo?

| 0 | não sabe
| 1 | até 15 dias
| 2 | entre 15 dias e 3 meses
| 3 | entre 3 e 6 meses
| 4 | mais de 6 meses
| 9 | não quis responder

(12) Onde fica a criança, durante o dia?

| 0 | não sabe
| 1 | em casa
| 2 | creche, escola ou outra casa, durante um turno
| 3 | creche, escola ou outra casa, em tempo integral
| 9 | não quis responder

(13) Durante o último ano, quem ficou mais tempo tomando conta da criança, em casa?

| 0 | não sabe
| 1 | mãe
| 2 | pai
| 3 | outro (especificar): ________________________

(preencher coluna nº 16 do próximo quadro)

| 9 | não quis responder

Grau de instrução:

| 0 | não sabe
| 1 | 1º grau incompleto
| 2 | 1º grau completo
| 3 | 2º grau incompleto
| 4 | 2º grau completo ou mais
| 5 | não estudou. Lê e/ou escreve.
| 6 | não estudou. Nem lê nem escreve.
| 8 | não se aplica.
| 9 | não quis responder.

Religião dos pais:

| 0 | não sabe
| 1 | católica
| 2 | luterana, anglicana, batista tradicional ou presbiteriana tradicional
| 3 | crente, batista renovada, presbiteriana renovada, adventista do 7º dia, assembléia de Deus, testemunha de Jeová, quadrangular, pentecostal ou comunidades cristãs.
| 4 | espírita (inclui karedist, teosofista, esotérica e rosacruzan)
| 5 | afro-brasileira (inclui umbanda, candomblé e quimbanda)
| 6 | judaica
| 6 | outra. Especificar: ________________________
| 8 | não se aplica
| 9 | não quis responder

(17) Mãe

(18) Pai
Características da casa:

(19) Qual é a situação da casa, em termos de propriedade?
- 0: não sabe
- 1: própria (quitada, sem ônus), com escritura
- 2: própria, sem escritura
- 3: hipotecada (própria, com ônus)
- 4: alugada
- 5: outra
- 9: não quis responder.

(20) Quantos quartos possui a casa?
- naquais responder.

(21) A casa possui banheiro?
- 1: sim, exeto
- 2: sim, um interno
- 3: sim, mais de um, internos
- 4: não
- 9: não quis responder.

(22) A casa possui cozinha independente?
- (0, 1, 2 ou 9).

(23) Além dos anteriores, quantos outros cômodos possui a casa?
- naquais responder.

(24) A família possui outro imóvel, mesmo em outra cidade?
- (0, 1, 2 ou 9).

(25) A família possui televisão?
- 0: não sabe
- 1: sim, mais de uma, sendo pelo menos uma em cores
- 2: sim, uma em cores
- 3: sim, preto e branco
- 4: não
- 9: não quis responder.

(26) A família possui geladeira?
- (0, 1, 2 ou 9).

Ocupação principal dos pais:

<table>
<thead>
<tr>
<th>Ocupação</th>
<th>(27) Mãe</th>
<th>(28) Pai</th>
</tr>
</thead>
<tbody>
<tr>
<td>0- não sabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- industriano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2- comerciário</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3- construção civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4- serviços*, como assalariado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5- serviços*, como autônomo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6- desempregado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7- empregada doméstica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10- aposentado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11- dona de casa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12- outro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8- não se aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9- não quis responder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* inclui serviço público, bancos, pequenas empresas e trabalho como profissional liberal

|| ||
(29) Qual é a renda familiar?

0. não sabe
1. menos de 1 salário mínimo
2. maior ou igual a 1 e menor que 2 salários mínimos
3. maior ou igual a 2 e menor que 3 salários mínimos
4. maior ou igual a 3 e menor que 5 salários mínimos
5. maior ou igual a 5 e menor que 10 salários mínimos
6. maior ou igual a 10 salários mínimos
7. não quis responder.

(30) A família vive na casa desde que época?

..... / (MM/AA) ou há anos e meses.

(0 ou 9)

ABASTECIMENTO DE ÁGUA:

(31) De onde vem a água consumida na casa?

0. não sabe
1. da rede da COPASA (vá para a pergunta 33)
2. de poço (cisterna) (vá para a pergunta 35)
3. de caminhão pipa (vá para a pergunta 39)
4. mais de um anterior (vá para a pergunta 32)
5. outro (especificar) ...
6. não quis responder.

(32) Qual é a água mais utilizada pela criança para bebida?

0. não sabe
1. da COPASA
2. do poço (cisterna)
3. de caminhão pipa
4. água mineral engarrafada
5. não quis responder.

PREENCHA AS PERGUNTAS 33 E 34 APENAS SE HOUVER LIGAÇÃO NA REDE DA COPASA

(33) Falta água da COPASA?

0. não sabe
1. pelo menos uma vez por dia
2. pelo menos uma vez por semana
3. pelo menos uma vez por mês
4. frequência menor
5. nunca falta
6. não quis responder.

(34) Existe alguma queixa (cor, berrante, cheiro, gosto) quanto à água da COPASA? (Se o cheiro ou o gosto forem de cloro, preencha 2)

(0, 1, 2 ou 9)

PREENCHA AS PERGUNTAS 35 A 38 APENAS SE EXISTIR POÇO

(35) Como é a parte superior do poço?

0. não sabe
1. coberta com laje e tampa de concreto
2. coberta com laje e tampa de ...
3. coberta com madeira
4. coberta com outro material (especificar)
5. descoberta
6. não quis responder.

(36) Como a água é retirada do poço?

0. não sabe
1. com bomba elétrica
2. com bomba manual
3. com balde e corda
4. por outro meio (especificar): ...
5. não quis responder.
(37) É utilizado algum tipo de clorador dentro do poço? (0, 1, 2 ou 3).

(38) Existe alguma queixa (cor, barrenta, cheiro, gosto) quanto à água do poço? (Se o cheiro ou o gosto forem de cloro, preencha 2).

PREENCHA AS PERGUNTAS 39 E 40 APENAS SE HOUVER ABASTECIMENTO POR CAMINHÃO PIPA

(39) Você sabe de onde vem a água distribuída pelos caminhões?
 - 1. sim, vem de ...
 - 2. não
 - 9. não quis responder.

(40) De quanto em quanto tempo o caminhão passa?
 - 0. não sabe
 - 1. todos os dias
 - 2. todos os dias úteis
 - 3. três vezes por semana
 - 4. duas vezes por semana
 - 5. uma vez por semana
 - 6. frequência menor
 - 9. não quis responder.

AS PERGUNTAS SEGUINTESES DEVEM SER RESPONDIDAS EM QUALQUER SITUAÇÃO

(41) A água que a criança bebe tem antes algum preparo?
 - 0. não sabe
 - 1. sim, é misturada com cloro (água sanitária, MILTON etc)
 - 2. sim, é filtrada em filtro de vela
 - 3. sim, é filtrada, em outro tipo de filtro
 - 4. sim, é misturada com cloro e filtrada
 - 5. sim, é fervida
 - 6. outro (especificar): ...
 - 7. só bebe água mineral engarrafada
 - 8. não
 - 9. não quis responder.

(42) As frutas e verduras que ele (ela) come tem antes algum preparo?
 - 0. não sabe
 - 1. sim, são lavadas
 - 2. sim, são postas em água sanitária, vinagre ou iodo
 - 4. não
 - 8. não se aplica
 - 9. não quis responder.

(43) Na casa, existe caixa d'água?
 - 0. não sabe (vá para a pergunta 46)
 - 1. sim, desde / (MM/AA) ou anos e meses (vá para a pergunta 44)
 - 2. não. A água é armazenada em .. (vá para a pergunta 46)
 - 9. não quis responder.

(44) Qual é o material da caixa d'água?
 - 0. não sabe
 - 1. cimento amianto com tampa
 - 2. cimento amianto sem tampa
 - 3. fibra de vidro com tampa de ..
 - 4. outro material com cobertura
 - 5. outro material sem cobertura
 - 9. não quis responder.
<table>
<thead>
<tr>
<th>Pergunta</th>
<th>Opção 0</th>
<th>Opção 1</th>
<th>Opção 2</th>
<th>Opção 3</th>
<th>Opção 4</th>
<th>Opção 5</th>
<th>Opção 6</th>
<th>Opção 7</th>
<th>Opção 8</th>
<th>Opção 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(45) De quanto em quanto tempo a caixa d’água costuma ser esvaziada e lavada?</td>
<td>não sabe</td>
<td>pelo menos uma vez em cada três meses</td>
<td>pelo menos uma vez por semestre</td>
<td>pelo menos uma vez por ano</td>
<td>com menor frequência</td>
<td>nunca foi</td>
<td>não quis responder.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(46) A criança costuma enxaguar as mãos antes de se alimentar?</td>
<td>não sabe</td>
<td>quase sempre, com água e sabão</td>
<td>quase sempre, apenas com água</td>
<td>com pequena frequência</td>
<td>não costuma</td>
<td>não quis responder.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(47) A criança costuma lavar as mãos depois de defecar?</td>
<td>não sabe</td>
<td>quase sempre, com água e sabão</td>
<td>quase sempre, apenas com água</td>
<td>com pequena frequência</td>
<td>não costuma</td>
<td>não quis responder.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESGOTO:</td>
<td></td>
</tr>
<tr>
<td>(48) Existe separação entre o esgoto do vaso e o do restante da casa?</td>
<td>não sabe</td>
<td>sim</td>
<td>não</td>
<td>não quis responder.</td>
<td>(vá para a pergunta 53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esgoto do vaso misturado com o do restante da casa:</td>
<td></td>
</tr>
<tr>
<td>(49) Onde é lançado o esgoto da casa?</td>
<td>não sabe</td>
<td>na rede da COPASA</td>
<td>na boca de lobo (bueiro) da rua</td>
<td>na superfície da rua (meio-fio)</td>
<td>em duas fossas, passando primeiro por uma (fossa séptica) e depois indo para a segunda (sumidouro)</td>
<td>em uma fossa apenas</td>
<td>no terreno</td>
<td>outro (especificar):</td>
<td>não quis responder.</td>
<td>(vá para a pergunta 53)</td>
</tr>
<tr>
<td>(50) É comum a ocorrência de entupimento na rede da rua?</td>
<td></td>
</tr>
<tr>
<td>(51) Onde é lançado o esgoto do vaso?</td>
<td>não sabe</td>
<td>em duas fossas, passando primeiro por uma (fossa séptica) e depois indo para a segunda (sumidouro)</td>
<td>em uma fossa, apenas</td>
<td>o banheiro é externo e o vaso fica acima de uma fossa (casinha)</td>
<td>no terreno</td>
<td>outro (especificar):</td>
<td>não quis responder.</td>
<td>(vá para a pergunta 53)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(52) Onde é lançado o restante do esgoto da casa?

0	não sabe
1	na boca de lobo (buero) da rua
2	na superfície da rua (meio fio)
3	em uma fossa
4	no terreno
5	outro (especificar): ..
9	não quis responder.

Informações complementares sobre hábitos sanitários:

(53) Existe algum córrego, brejo, lago ou açude próximo da casa? (Se 1, continue; do contrário, vá para a pergunta 55)

(54) A criança tem contato com a água?

0	não sabe
1	sim, costuma brincar na água
2	sim, costuma cruzar a água descalça
3	sim, por outra razão (especificar):
4	não
9	não quis responder.

(55) Existe esgoto correndo na rua ou em outro local frequentado pela criança?

(56) Onde costumam ser jogadas as fezes das fávidas das crianças?

0	não sabe
1	no vaso
2	no lixo
3	no terreno
4	outra (especificar): ..
9	não quis responder.

LIXO:

(57) Como o lixo é embalado?

0	não sabe
1	em saco plástico de lixo
2	em sacola de plástico
3	em papel ou caixa de papelão
4	outro (especificar): ..
9	não quis responder.

(58) Onde é colocado o lixo da casa?

0	não sabe	(vá para a pergunta 60)
1	colocado na rua para a coleta pela Prefeitura	
2	colocado em uma caçamba da rua	
3	enterrado	(vá para a pergunta 60)
4	queimado no quintal	(vá para a pergunta 60)
5	jogado em lixo vago	(vá para a pergunta 60)
6	outro (especificar): ..	
9	não quis responder.	

(59) De quanto em quanto tempo os caminhões da Prefeitura recolhem o lixo?

0	não sabe
1	todos os dias
2	todos os dias úteis
3	três vezes por semana
4	duas vezes por semana
5	uma vez por semana
6	menos
9	não quis responder.
ÁGUA DE CHUVA:

(60) A água de chuva que escorre pela rua ou pelo lote vizinho costuma invadir, em grande quantidade, seu lote?

0. não sabe
1. mais de cinco vezes por ano
2. menos de cinco vezes por ano
3. nunca
9. não quis responder.

(61) Existem partes baixas no lote, onde é comum o empoeiramento de água?

0, 1, 2 ou 9.

VETORES:

(62) Durante quantos meses por ano são observadas moscas na casa?

0. não sabe
1. todo o tempo
2. pelo menos 6 meses por ano
3. pelo menos 3 meses por ano
4. pelo menos 1 mês por ano
5. menos de 1 mês por ano
6. nunca aparece
9. não quis responder.

(63) Durante quantos meses por ano são observados mosquitos na casa?

0. não sabe
1. todo o tempo
2. pelo menos 6 meses por ano
3. pelo menos 3 meses por ano
4. pelo menos 1 mês por ano
5. menos de 1 mês por ano
6. nunca aparece
9. não quis responder.

(64) Durante quantos meses por ano são observadas baratas na casa?

0. não sabe
1. todo o tempo
2. pelo menos 6 meses por ano
3. pelo menos 3 meses por ano
4. pelo menos 1 mês por ano
5. menos de 1 mês por ano
6. nunca aparece
9. não quis responder.

(65) De quanto em quanto tempo aparecem ratos na casa ou no lote?

0. não sabe
1. pelo menos 1 vez por semana
2. pelo menos 1 vez por mês
3. pelo menos 1 vez por semestre
4. pelo menos 1 vez por ano
5. menos de uma vez por ano
6. nunca
9. não quis responder.

AGORA, VOCÊ DEVE VERIFICAR ALGUMAS INSTALAÇÕES DA CASA

(66) Quantos quartos possui a casa?

0, 1, 2, 3, 4, 5 ou 6

9. houve recusa para mostrar.

(67) A casa possui banheiro?

0, 1, 2, 3, 4, 5 ou 6

9. houve recusa para mostrar.

8
(68) A casa possui cozinha independente? \(\square\) (0, 1, 2 ou 9).

(69) Além dos anteriores, quantos outros cômodos possui a casa? \(\square\) cômodos. \(\square\) houve recusa para mostrar.

(70) A caixa d’água é de \(\square\) não foi possível observar
\(\square\) cimento amianto com tampa
\(\square\) cimento amianto sem tampa
\(\square\) fibra de vidro com tampa de ...
\(\square\) outro material, com cobertura
\(\square\) outro material, sem cobertura
\(\square\) não tem
\(\square\) houve recusa para mostrar.

(71) Peça para ir até o local da(s) fossas e verifique quantas existem (pela observação de sua cobertura e da existência de casinha). \(\square\) não foi possível observar
\(\square\) uma
\(\square\) duas
\(\square\) três
\(\square\) houve recusa para mostrar.

(72) O poço é \(\square\) não foi possível observar
\(\square\) coberto com laje e tampa de concreto
\(\square\) coberto com laje e tampa de ...
\(\square\) coberto com madeira
\(\square\) coberto com outro material (especificar): ...
\(\square\) descoberto
\(\square\) houve recusa para mostrar.

(73) A água é retirada do poço \(\square\) não foi possível observar
\(\square\) com bomba elétrica
\(\square\) com bomba manual
\(\square\) com balde e corda
\(\square\) outro meio (especificar): ...
\(\square\) houve recusa para mostrar.

(74) O poço fica a uma distância da fossa mais próxima, de cerca de \(\square\) metros.
\(\square\) não foi possível observar
\(\square\) houve recusa para mostrar.

(75) O poço fica, em relação à fossa mais próxima, numa posição \(\square\) não foi possível observar
\(\square\) mais alta
\(\square\) mais baixa
\(\square\) no mesmo nível
\(\square\) houve recusa para mostrar.

(76) Peça para ver o padrão de ligação de água na rede pública e verifique de que tipo é \(\square\) não foi possível observar
\(\square\) caixelete com hidrômetro
\(\square\) caixelete sem hidrômetro
\(\square\) houve recusa para mostrar.

(77) Peça para ver a ligação de esgoto na rede da COPASA e verifique se existe uma tampa de farro no passeio \(\square\) (0, 1, 2 ou 9).

(78) Verifique se existem lugares mais altos vizinhos ao lote, por onde a água de chuva pode invadi-lo \(\square\) (0, 1, 2 ou 9).

(79) Verifique se existem pontos baixos no lote, onde podem ocorrer empoçamentos \(\square\) (0, 1, 2 ou 9).
7.2- ANEXO B

QUESTIONÁRIO PARA OS CONTROLES
(APENAS AS DUAS PÁGINAS, INCLUÍDAS NO ANEXO, DIFERENCIAM-SE DO QUESTIONÁRIO PARA OS CASOS)
PESQUISA UFMG

SAÚDE E CONDIÇÕES DE MORADIA EM BETIM

Existem crianças com menos de 5 anos completos vivendo nesta casa ou neste lote?

NÃO Preencha a FICHA DE VISITAS e, após terminar, dirija-se à próxima casa da esquerda na quadra.

SIM Sorteie uma casa, se houver mais de uma. Caso não existam crianças com menos de 5 anos, sorteie outra, e assim por diante.

Após definida a pessoa a ser entrevistada, preencha os dados abaixo, leia em voz alta o TERMO DE ACEITAÇÃO, assine-o, date-o e colete a assinatura, em duas vias.

DADOS SOBRE O ENTREVISTADO

NOME..POSIÇÃO NA FAMÍLIA..................
RUA...Nº........ BAIRRO..........................
REFERÊNCIA PARA LOCALIZAÇÃO DA CASA..

TERMO DE ACEITAÇÃO

Esta pesquisa da Universidade Federal de Minas Gerais tem por objetivo analisar a situação de moradia e de saneamento da população de Betim e com isso fornecer dados para a melhoria dessas condições.

Eu estou de acordo em participar da pesquisa, entendendo que essa participação significa responder a perguntas, sobre a casa onde vivo e os seus moradores, e mostrar algumas instalações na casa e no lote. Estou ciente que as informações coletadas serão tratadas confidencialmente, sendo que eu, nem a casa, seremos identificados durante a análise das informações e a divulgação dos resultados da pesquisa. O trabalho envolve a entrevista de cerca de 2.000 pessoas e minhas respostas serão combinadas com as dos outros participantes, para a análise dos totais.

_________________________________ ________________________________ _____________
Assinatura do participante Assinatura do entrevistador Data

_________________________________ ________________________________ _____________
Assinatura do participante Assinatura do entrevistador Data
Nome do entrevistador: ... | 80 |

Pessoas que vivem na casa

(1) A mãe vive na casa? || (0, 1, 2 ou 9).

(2) Quando nasceu a mãe? / / (DD/MM/AA) ou idade de anos || (0, 8 ou 9).

(3) O pai vive na casa? || (0, 1, 2 ou 9).

(4) Quantos filhos maiores de 5 anos completos vivem na casa?

(5) Quantas crianças entre 5 e 14 anos completos vivem na casa?

(6) Qual o número de outros adultos (maior de 14 anos completos) que vivem na casa?

Especificar: ..

(7) Quais são os nomes e as idades das crianças com menos de 5 anos completos? Preencha pela ordem de nascimento:

<table>
<thead>
<tr>
<th>PRIMEIRO NOME</th>
<th>IDADE (anos)</th>
<th>IDADE (meses)</th>
<th>PRIMEIRO NOME</th>
<th>IDADE (anos)</th>
<th>IDADE (meses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td></td>
<td></td>
<td>6-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-</td>
<td></td>
<td></td>
<td>7-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-</td>
<td></td>
<td></td>
<td>8-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-</td>
<td></td>
<td></td>
<td>9-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-</td>
<td></td>
<td></td>
<td>10-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SORTEIE UMA DAS CRIANÇAS MENORES DE 5 ANOS

(8) A criança sorteadas foi a de número ___.

AS QUESTÕES SEGUINTESES REFEREM-SE APENAS A ESSA CRIANÇA

(9) Sexo

____ 1 __ ____ 2 __
MASC. FEM.

(10) Qual é a data de nascimento? / / (DD/MM/AA)

___0___ (0 ou 9)

1
7.3- **ANEXO C**

FICHA DE CONTROLE - VISITA AOS CASOS
FICHA DE VISITAS

NOME DA CRIANÇA:

ENDERECO:
RUA: ___________________________ Nº: ________ Bairro: ___________________________

<table>
<thead>
<tr>
<th>VISITA</th>
<th>DATA</th>
<th>HORA INÍCIO</th>
<th>OCORRÊNCIA</th>
<th>Entrevista realizada. Hora de término</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Não havia ninguém em casa</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Recusa</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.4- ANEXO D

FICHA DE CONTROLE - VISITA AOS CONTROLES
FICHA DE VISITAS

ENDERECO:

RUA..Nº................................BAIRRO...

<table>
<thead>
<tr>
<th>CASA*</th>
<th>VISITA</th>
<th>DATA</th>
<th>HORA INÍCIO</th>
<th>OCORRÊNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Não havia ninguém em casa</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ENDEREÇO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ENDEREÇO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ENDEREÇO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ENDEREÇO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ENDEREÇO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.5- ANEXO E

FICHA - REGISTRO DE CASOS DE DIARRÉIA NOS CONTROLES
FICHA - REGISTRO DE CASOS DE DIARRÉIA

NOME DA CRIANÇA: __

A criança teve que ser levada a algum hospital ou posto de saúde para tratar de diarreia, nas datas:

1ª vez: ______/_____/______ A diarreia veio acompanhada de:

- febre
- vômito
- sangue nas fezes
- secreção nas fezes

2ª vez: ______/_____/______ A diarreia veio acompanhada de:

- febre
- vômito
- sangue nas fezes
- secreção nas fezes

3ª vez: ______/_____/______ A diarreia veio acompanhada de:

- febre
- vômito
- sangue nas fezes
- secreção nas fezes

Quanto tempo antes da 1ª vez a criança foi levada a um serviço de saúde para tratar de diarreia?

- menos de uma semana antes
- entre uma e duas semanas antes
- entre duas semanas e um mês antes
- entre um e dois meses antes
- mais de dois meses antes
- foi a primeira vez.

POSTO DE SAÚDE OU HOSPITAL: __
7.6- ANEXO F

DISTRIBUIÇÃO DE FREQUÊNCIAS ENTRE CASOS E CONTROLES
<table>
<thead>
<tr>
<th>VARIÁVEL¹,²</th>
<th>CASO</th>
<th>CONTROLE</th>
<th>RR (IC a 95%)³</th>
<th>p⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>(%)</td>
<td>n</td>
<td>(%)</td>
</tr>
<tr>
<td>Mãe vive com a criança?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>não</td>
<td>23</td>
<td>(2.31)</td>
<td>10</td>
<td>(1.00)</td>
</tr>
<tr>
<td>sim</td>
<td>874</td>
<td>(97.69)</td>
<td>889</td>
<td>(99.00)</td>
</tr>
<tr>
<td>Pai vive com a criança?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>não</td>
<td>161</td>
<td>(16.16)</td>
<td>125</td>
<td>(12.53)</td>
</tr>
<tr>
<td>sim</td>
<td>635</td>
<td>(83.84)</td>
<td>873</td>
<td>(87.47)</td>
</tr>
<tr>
<td>Número de crianças < 5 anos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>604</td>
<td>(60.58)</td>
<td>757</td>
<td>(75.78)</td>
</tr>
<tr>
<td>2</td>
<td>351</td>
<td>(33.20)</td>
<td>219</td>
<td>(21.92)</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>(5.22)</td>
<td>21</td>
<td>(2.10)</td>
</tr>
<tr>
<td>4 ou mais</td>
<td>10</td>
<td>(1.00)</td>
<td>2</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Ordem de nascimento:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1ª</td>
<td>730</td>
<td>(73.22)</td>
<td>866</td>
<td>(88.69)</td>
</tr>
<tr>
<td>2ª</td>
<td>255</td>
<td>(23.57)</td>
<td>102</td>
<td>(10.21)</td>
</tr>
<tr>
<td>3ª ou mais</td>
<td>32</td>
<td>(3.21)</td>
<td>11</td>
<td>(1.10)</td>
</tr>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>masculino</td>
<td>527</td>
<td>(52.86)</td>
<td>502</td>
<td>(50.25)</td>
</tr>
<tr>
<td>feminino</td>
<td>470</td>
<td>(47.14)</td>
<td>497</td>
<td>(49.75)</td>
</tr>
<tr>
<td>Local onde criança passa o dia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>em casa</td>
<td>929</td>
<td>(93.18)</td>
<td>909</td>
<td>(91.08)</td>
</tr>
<tr>
<td>creche, um turno(2)</td>
<td>28</td>
<td>(2.61)</td>
<td>61</td>
<td>(6.11)</td>
</tr>
<tr>
<td>creche, tempo integral</td>
<td>40</td>
<td>(4.01)</td>
<td>28</td>
<td>(2.81)</td>
</tr>
<tr>
<td>Pessoas que cuida da criança</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mãe</td>
<td>843</td>
<td>(84.55)</td>
<td>829</td>
<td>(83.07)</td>
</tr>
<tr>
<td>pai</td>
<td>11</td>
<td>(1.10)</td>
<td>13</td>
<td>(1.30)</td>
</tr>
<tr>
<td>outro</td>
<td>143</td>
<td>(14.34)</td>
<td>156</td>
<td>(15.63)</td>
</tr>
<tr>
<td>Instrução da mãe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2º grau completo ou mais</td>
<td>88</td>
<td>(8.97)</td>
<td>184</td>
<td>(18.79)</td>
</tr>
<tr>
<td>2º grau incompleto</td>
<td>36</td>
<td>(3.67)</td>
<td>54</td>
<td>(5.52)</td>
</tr>
<tr>
<td>1º grau completo</td>
<td>87</td>
<td>(8.87)</td>
<td>144</td>
<td>(14.71)</td>
</tr>
<tr>
<td>1º grau incompleto</td>
<td>731</td>
<td>(74.52)</td>
<td>583</td>
<td>(59.55)</td>
</tr>
<tr>
<td>lê e/ou escreve</td>
<td>14</td>
<td>(1.43)</td>
<td>7</td>
<td>(0.72)</td>
</tr>
<tr>
<td>não lê, nem escreve</td>
<td>25</td>
<td>(2.55)</td>
<td>7</td>
<td>(0.72)</td>
</tr>
<tr>
<td>Instrução do pai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2º grau completo ou mais</td>
<td>69</td>
<td>(6.32)</td>
<td>167</td>
<td>(16.49)</td>
</tr>
<tr>
<td>2º grau incompleto</td>
<td>29</td>
<td>(2.90)</td>
<td>56</td>
<td>(5.53)</td>
</tr>
<tr>
<td>1º grau completo</td>
<td>101</td>
<td>(12.18)</td>
<td>147</td>
<td>(14.71)</td>
</tr>
<tr>
<td>1º grau incompleto</td>
<td>599</td>
<td>(72.29)</td>
<td>481</td>
<td>(48.13)</td>
</tr>
<tr>
<td>lê e/ou escreve</td>
<td>15</td>
<td>(1.61)</td>
<td>4</td>
<td>(0.47)</td>
</tr>
<tr>
<td>não lê, nem escreve</td>
<td>16</td>
<td>(1.63)</td>
<td>2</td>
<td>(0.23)</td>
</tr>
<tr>
<td>Instrução de outra pessoa que cuida da criança</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2º grau completo ou mais</td>
<td>3</td>
<td>(2.33)</td>
<td>9</td>
<td>(6.21)</td>
</tr>
<tr>
<td>2º grau incompleto</td>
<td>4</td>
<td>(3.10)</td>
<td>8</td>
<td>(5.52)</td>
</tr>
<tr>
<td>1º grau completo</td>
<td>4</td>
<td>(3.10)</td>
<td>9</td>
<td>(6.21)</td>
</tr>
<tr>
<td>1º grau incompleto</td>
<td>91</td>
<td>(70.54)</td>
<td>109</td>
<td>(75.17)</td>
</tr>
<tr>
<td>lê e/ou escreve</td>
<td>5</td>
<td>(3.88)</td>
<td>5</td>
<td>(3.45)</td>
</tr>
<tr>
<td>não lê, nem escreve</td>
<td>22</td>
<td>(17.05)</td>
<td>5</td>
<td>(3.45)</td>
</tr>
</tbody>
</table>

¹ Variáveis categorizadas
² Dados baseados em amostra
³ Intervalo de Confiabilidade
⁴ P-valor
TABELA 42 (continuação)
DISTRIBUIÇÃO DE FREQUÊNCIAS, RISCO RELATIVO E TESTES DE SIGNIFICÂNCIA
VARIÁVEIS QUALITATIVAS

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CASO</th>
<th>CONTROLE</th>
<th>RR (IC a 95%)</th>
<th>p4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>(%)</td>
<td>n</td>
<td>(%)</td>
</tr>
<tr>
<td>Religião da mãe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• católica</td>
<td>774</td>
<td>(78,18)</td>
<td>767</td>
<td>(78,99)</td>
</tr>
<tr>
<td>• protestante tradicional</td>
<td>3</td>
<td>(0,30)</td>
<td>15</td>
<td>(1,54)</td>
</tr>
<tr>
<td>• protestante renovada</td>
<td>161</td>
<td>(16,28)</td>
<td>168</td>
<td>(17,30)</td>
</tr>
<tr>
<td>• espírita</td>
<td>2</td>
<td>(0,20)</td>
<td>9</td>
<td>(0,93)</td>
</tr>
<tr>
<td>• afro-brasileira</td>
<td>0</td>
<td>(0,00)</td>
<td>1</td>
<td>(0,10)</td>
</tr>
<tr>
<td>• nenhuma (1)</td>
<td>50</td>
<td>(5,05)</td>
<td>11</td>
<td>(1,13)</td>
</tr>
<tr>
<td>Religião do pai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• católica</td>
<td>694</td>
<td>(81,55)</td>
<td>704</td>
<td>(81,77)</td>
</tr>
<tr>
<td>• protestante tradicional</td>
<td>3</td>
<td>(0,35)</td>
<td>13</td>
<td>(1,51)</td>
</tr>
<tr>
<td>• protestante renovada</td>
<td>101</td>
<td>(11,87)</td>
<td>122</td>
<td>(14,17)</td>
</tr>
<tr>
<td>• espírita</td>
<td>3</td>
<td>(0,35)</td>
<td>6</td>
<td>(0,70)</td>
</tr>
<tr>
<td>• nenhuma (1)</td>
<td>60</td>
<td>(5,88)</td>
<td>16</td>
<td>(1,86)</td>
</tr>
<tr>
<td>Propriedade do caso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• score 3</td>
<td>35</td>
<td>(3,56)</td>
<td>78</td>
<td>(8,20)</td>
</tr>
<tr>
<td>• própria e escrita (score 2)</td>
<td>345</td>
<td>(35,06)</td>
<td>385</td>
<td>(40,48)</td>
</tr>
<tr>
<td>• hipótese (score 1)</td>
<td>105</td>
<td>(10,67)</td>
<td>152</td>
<td>(15,98)</td>
</tr>
<tr>
<td>• própria s/ escrita, alugada ou cedida (score 0)</td>
<td>499</td>
<td>(50,71)</td>
<td>336</td>
<td>(35,33)</td>
</tr>
<tr>
<td>Existência de banheiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mais de um (≥ 1 intern)</td>
<td>68</td>
<td>(6,82)</td>
<td>183</td>
<td>(16,32)</td>
</tr>
<tr>
<td>• um, interno</td>
<td>680</td>
<td>(68,20)</td>
<td>702</td>
<td>(70,27)</td>
</tr>
<tr>
<td>• um, externo</td>
<td>201</td>
<td>(20,16)</td>
<td>119</td>
<td>(11,91)</td>
</tr>
<tr>
<td>• não existe</td>
<td>48</td>
<td>(4,81)</td>
<td>15</td>
<td>(1,50)</td>
</tr>
<tr>
<td>Existência de cozinha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• não</td>
<td>259</td>
<td>(25,98)</td>
<td>104</td>
<td>(10,43)</td>
</tr>
<tr>
<td>• sim</td>
<td>738</td>
<td>(74,72)</td>
<td>893</td>
<td>(89,57)</td>
</tr>
<tr>
<td>Posse de televisor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mais de 1 (≥ 1 em cores)</td>
<td>48</td>
<td>(4,82)</td>
<td>121</td>
<td>(12,11)</td>
</tr>
<tr>
<td>• um, em cores</td>
<td>381</td>
<td>(38,25)</td>
<td>510</td>
<td>(51,05)</td>
</tr>
<tr>
<td>• um, preto e branco</td>
<td>337</td>
<td>(33,84)</td>
<td>236</td>
<td>(23,62)</td>
</tr>
<tr>
<td>• não</td>
<td>230</td>
<td>(23,09)</td>
<td>132</td>
<td>(13,21)</td>
</tr>
<tr>
<td>Posse de geladeira</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• não</td>
<td>370</td>
<td>(37,15)</td>
<td>148</td>
<td>(14,84)</td>
</tr>
<tr>
<td>• sim</td>
<td>626</td>
<td>(62,85)</td>
<td>849</td>
<td>(85,16)</td>
</tr>
<tr>
<td>Ocupação da mãe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• industrialia</td>
<td>8</td>
<td>(0,81)</td>
<td>14</td>
<td>(1,43)</td>
</tr>
<tr>
<td>• comercialia</td>
<td>10</td>
<td>(1,01)</td>
<td>17</td>
<td>(1,74)</td>
</tr>
<tr>
<td>• serviços, como assalariado</td>
<td>105</td>
<td>(10,72)</td>
<td>149</td>
<td>(15,24)</td>
</tr>
<tr>
<td>• serviços, como autônoma</td>
<td>33</td>
<td>(3,34)</td>
<td>57</td>
<td>(5,83)</td>
</tr>
<tr>
<td>• desempregada (1)</td>
<td>21</td>
<td>(2,12)</td>
<td>9</td>
<td>(0,92)</td>
</tr>
<tr>
<td>• empregada doméstica (1)</td>
<td>48</td>
<td>(4,85)</td>
<td>46</td>
<td>(4,70)</td>
</tr>
<tr>
<td>• dona de casa (1)</td>
<td>758</td>
<td>(76,64)</td>
<td>686</td>
<td>(70,14)</td>
</tr>
<tr>
<td>Ocupação do pai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• industrial (1)</td>
<td>252</td>
<td>(25,82)</td>
<td>186</td>
<td>(20,43)</td>
</tr>
<tr>
<td>• comercial</td>
<td>40</td>
<td>(4,73)</td>
<td>60</td>
<td>(6,91)</td>
</tr>
<tr>
<td>• construção civil (1)</td>
<td>110</td>
<td>(11,02)</td>
<td>80</td>
<td>(9,22)</td>
</tr>
<tr>
<td>• serviços, como assalariado</td>
<td>231</td>
<td>(27,34)</td>
<td>325</td>
<td>(37,44)</td>
</tr>
<tr>
<td>• serviços, como autônomo</td>
<td>124</td>
<td>(14,67)</td>
<td>154</td>
<td>(17,74)</td>
</tr>
<tr>
<td>• desempregado (1)</td>
<td>79</td>
<td>(9,35)</td>
<td>49</td>
<td>(5,64)</td>
</tr>
<tr>
<td>• aposentado</td>
<td>9</td>
<td>(1,07)</td>
<td>14</td>
<td>(1,61)</td>
</tr>
</tbody>
</table>
TABELA 42 (continuação)
DISTRIBUIÇÃO DE FREQUÊNCIAS, RISCO RELATIVO E TESTES DE SIGNIFICÂNCIA VARIÁVEIS QUALITATIVAS

<table>
<thead>
<tr>
<th>VARIÁVEL (^1,^2)</th>
<th>CASO</th>
<th>CONTROLE</th>
<th>RR (IC a 95%) (^3)</th>
<th>(p^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origem da água</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rede pública (^2)</td>
<td>948</td>
<td>(95,66)</td>
<td>980 (98,39)</td>
<td>1,00</td>
</tr>
<tr>
<td>poço raso</td>
<td>40</td>
<td>(4,04)</td>
<td>15 (1,51)</td>
<td>2,76 (1,46 - 5,25)</td>
</tr>
<tr>
<td>caminhão pipa</td>
<td>3</td>
<td>(0,30)</td>
<td>1 (0,10)</td>
<td>3,10 (0,25 - 162,97)</td>
</tr>
<tr>
<td>Falta água do sistema público</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nunca falta</td>
<td>478</td>
<td>(50,58)</td>
<td>542 (55,93)</td>
<td>1,00 (0)</td>
</tr>
<tr>
<td>frequência menor que mensal</td>
<td>199</td>
<td>(21,06)</td>
<td>175 (18,06)</td>
<td>1,29 (6)</td>
</tr>
<tr>
<td>pelo menos 1 vez por mês</td>
<td>87</td>
<td>(9,21)</td>
<td>129 (13,31)</td>
<td>0,76 (12)</td>
</tr>
<tr>
<td>pelo menos 1 vez por semana</td>
<td>93</td>
<td>(9,84)</td>
<td>76 (7,84)</td>
<td>1,39 (52)</td>
</tr>
<tr>
<td>pelo menos 1 vez por dia</td>
<td>88</td>
<td>(9,31)</td>
<td>47 (4,85)</td>
<td>2,12 (360)</td>
</tr>
<tr>
<td>Queixa sobre a água do sistema público</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim</td>
<td>44</td>
<td>(4,65)</td>
<td>44 (4,51)</td>
<td>1,03 >0,05</td>
</tr>
<tr>
<td>não</td>
<td>903</td>
<td>(95,35)</td>
<td>931 (95,49)</td>
<td>(0,66 - 1,61)</td>
</tr>
<tr>
<td>Cobertura do poço raso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>laje e tampa de concreto</td>
<td>27</td>
<td>(67,50)</td>
<td>10 (66,67)</td>
<td>>0,05</td>
</tr>
<tr>
<td>laje e tampa de outro material</td>
<td>6</td>
<td>(15,00)</td>
<td>2 (13,33)</td>
<td>>0,05</td>
</tr>
<tr>
<td>madeira ou outro material</td>
<td>4</td>
<td>(10,00)</td>
<td>2 (13,33)</td>
<td>>0,05</td>
</tr>
<tr>
<td>desobestre</td>
<td>3</td>
<td>(7,50)</td>
<td>1 (6,67)</td>
<td>>0,05</td>
</tr>
<tr>
<td>Extração da água do poço</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bomba elétrica</td>
<td>15</td>
<td>(37,50)</td>
<td>10 (66,67)</td>
<td>>0,05</td>
</tr>
<tr>
<td>bomba manual</td>
<td>1</td>
<td>(2,50)</td>
<td>0 (0,00)</td>
<td>>0,05</td>
</tr>
<tr>
<td>balde e corda</td>
<td>24</td>
<td>(60,00)</td>
<td>5 (33,33)</td>
<td>>0,05</td>
</tr>
<tr>
<td>Emprego de clorador no poço</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>não</td>
<td>33</td>
<td>(82,50)</td>
<td>11 (78,57)</td>
<td>1,29 >0,05</td>
</tr>
<tr>
<td>sim</td>
<td>7</td>
<td>(17,50)</td>
<td>3 (21,43)</td>
<td>(0,18 - 6,94)</td>
</tr>
<tr>
<td>Queixa sobre a água do poço</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim</td>
<td>30</td>
<td>(75,00)</td>
<td>9 (64,29)</td>
<td>1,67 >0,05</td>
</tr>
<tr>
<td>não</td>
<td>10</td>
<td>(25,00)</td>
<td>5 (35,71)</td>
<td>(0,35 - 7,22)</td>
</tr>
<tr>
<td>Preparo da água para bebida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>misturada com cloro</td>
<td>7</td>
<td>(0,70)</td>
<td>7 (0,70)</td>
<td>>0,05</td>
</tr>
<tr>
<td>filtro de vela</td>
<td>808</td>
<td>(81,29)</td>
<td>831 (83,35)</td>
<td>1,55</td>
</tr>
<tr>
<td>outro tipo de filtro (^2)</td>
<td>8</td>
<td>(0,80)</td>
<td>29 (2,91)</td>
<td>(1,33 - 2,14)</td>
</tr>
<tr>
<td>fervida</td>
<td>60</td>
<td>(6,04)</td>
<td>54 (5,42)</td>
<td>>0,05</td>
</tr>
<tr>
<td>utilização água mineral</td>
<td>1</td>
<td>(0,10)</td>
<td>2 (0,20)</td>
<td>>0,05</td>
</tr>
<tr>
<td>não prepara (^1)</td>
<td>110</td>
<td>(11,07)</td>
<td>74 (7,42)</td>
<td>>0,05</td>
</tr>
<tr>
<td>Preparo de frutas e verduras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lavadas</td>
<td>927</td>
<td>(96,56)</td>
<td>850 (88,73)</td>
<td>1,00</td>
</tr>
<tr>
<td>solução desinfetante (^2)</td>
<td>20</td>
<td>(2,08)</td>
<td>88 (9,19)</td>
<td>4,80 (2,86 - 8,12)</td>
</tr>
<tr>
<td>não prepara</td>
<td>13</td>
<td>(1,35)</td>
<td>20 (2,09)</td>
<td>2,86 (1,12 - 7,28)</td>
</tr>
<tr>
<td>Existência de reservatório domiciliar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim (^2)</td>
<td>645</td>
<td>(64,89)</td>
<td>850 (85,77)</td>
<td>3,26</td>
</tr>
<tr>
<td>armazena em vasilhame</td>
<td>274</td>
<td>(27,57)</td>
<td>115 (11,60)</td>
<td>(2,60 - 4,09)</td>
</tr>
<tr>
<td>não armazena</td>
<td>75</td>
<td>(7,55)</td>
<td>26 (2,62)</td>
<td>>0,05</td>
</tr>
</tbody>
</table>
TABELA 42 (continuação)
DISTRIBUIÇÃO DE FREQUÊNCIAS, RISCO RELATIVO E TESTES DE SIGNIFICÂNCIA
VARIÁVEIS QUALITATIVAS

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CASO</th>
<th>CONTROLE</th>
<th>RR (IC a 95%)</th>
<th>p<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material do reservatório domiciliar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cimento amianto c/ tampa</td>
<td>545 (64,63)</td>
<td>669 (63,21)</td>
<td>1,52</td>
<td><0,05</td>
</tr>
<tr>
<td>cimento amianto s/ tampa<sup>2</sup></td>
<td>44 (5,83)</td>
<td>36 (4,35)</td>
<td>(1,00 - 2,31)</td>
<td><0,05</td>
</tr>
<tr>
<td>fibra de vidro</td>
<td>2 (0,31)</td>
<td>1 (0,12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outro material c/ tampa<sup>1</sup></td>
<td>42 (5,62)</td>
<td>90 (10,67)</td>
<td>(s/tampa x c/ tampa)</td>
<td></td>
</tr>
<tr>
<td>outro material s/ tampa<sup>2</sup></td>
<td>11 (1,71)</td>
<td>12 (1,45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freqüência de limpeza do reservatório</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trimestral</td>
<td>206 (33,07)</td>
<td>197 (25,35)</td>
<td>1,00 [4]</td>
<td>>0,05</td>
</tr>
<tr>
<td>semestral</td>
<td>151 (24,24)</td>
<td>237 (30,50)</td>
<td>0,61 [2]</td>
<td><0,001</td>
</tr>
<tr>
<td>anual</td>
<td>94 (15,09)</td>
<td>148 (18,79)</td>
<td>0,82 [1]</td>
<td>(3)</td>
</tr>
<tr>
<td>menor frequência</td>
<td>68 (10,91)</td>
<td>85 (10,94)</td>
<td>0,77 [0,5]</td>
<td>(3)</td>
</tr>
<tr>
<td>nunca limpa</td>
<td>104 (16,89)</td>
<td>112 (14,41)</td>
<td>0,89 [0]</td>
<td></td>
</tr>
<tr>
<td>Lavagem das mãos antes da alimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quase sempre, água e sabão</td>
<td>282 (40,40)</td>
<td>430 (47,99)</td>
<td>1,00 [2]</td>
<td></td>
</tr>
<tr>
<td>quase sempre, apenas água</td>
<td>249 (35,67)</td>
<td>340 (37,95)</td>
<td>1,12 [1]</td>
<td>(3)</td>
</tr>
<tr>
<td>pequena frequência</td>
<td>61 (11,60)</td>
<td>83 (9,26)</td>
<td>1,49 [0,5]</td>
<td>(3)</td>
</tr>
<tr>
<td>nunca</td>
<td>66 (12,32)</td>
<td>43 (4,80)</td>
<td>3,05 [0]</td>
<td></td>
</tr>
<tr>
<td>Lavagem das mãos após defecar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quase sempre, água e sabão</td>
<td>259 (37,70)</td>
<td>406 (46,61)</td>
<td>1,00 [2]</td>
<td></td>
</tr>
<tr>
<td>quase sempre, apenas água</td>
<td>225 (32,75)</td>
<td>334 (38,35)</td>
<td>1,08 [1]</td>
<td>(3)</td>
</tr>
<tr>
<td>pequena frequência</td>
<td>85 (12,37)</td>
<td>71 (8,15)</td>
<td>1,88 [0,5]</td>
<td>(3)</td>
</tr>
<tr>
<td>nunca</td>
<td>118 (17,18)</td>
<td>60 (6,89)</td>
<td>3,08 [0]</td>
<td></td>
</tr>
<tr>
<td>Forma de disposição dos esgotos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rede pública</td>
<td>321 (32,99)</td>
<td>476 (53,48)</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>algum tipo de fossa</td>
<td>480 (49,33)</td>
<td>333 (37,42)</td>
<td>1,75 (1,43 - 2,13)</td>
<td><0,001</td>
</tr>
<tr>
<td>superfície da rua ou córrego</td>
<td>140 (14,39)</td>
<td>71 (7,98)</td>
<td>2,86 (2,04 - 4,01)</td>
<td>(3)</td>
</tr>
<tr>
<td>terreno</td>
<td>32 (3,29)</td>
<td>10 (1,12)</td>
<td>4,75 (2,25 - 10,47)</td>
<td></td>
</tr>
<tr>
<td>Ê comum a ocorrência de obstrução na rede de esgotos?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim</td>
<td>55 (16,57)</td>
<td>74 (15,16)</td>
<td>1,11</td>
<td>>0,05</td>
</tr>
<tr>
<td>não</td>
<td>277 (83,43)</td>
<td>414 (84,84)</td>
<td>(0,75 - 1,65)</td>
<td></td>
</tr>
<tr>
<td>Existência de corrego próximo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim</td>
<td>367 (36,88)</td>
<td>338 (33,97)</td>
<td>1,14</td>
<td>>0,05</td>
</tr>
<tr>
<td>não</td>
<td>628 (63,12)</td>
<td>659 (66,03)</td>
<td>(0,94 - 1,37)</td>
<td></td>
</tr>
<tr>
<td>Contato com a água do córrego</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>para brincar</td>
<td>6 (1,66)</td>
<td>6 (1,83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pra cruzá-lo</td>
<td>10 (2,77)</td>
<td>8 (1,83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>não</td>
<td>345 (95,57)</td>
<td>315 (96,33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existência de esgoto escoando na rua</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim</td>
<td>530 (53,16)</td>
<td>289 (29,25)</td>
<td>2,74</td>
<td><0,001</td>
</tr>
<tr>
<td>não</td>
<td>467 (46,84)</td>
<td>699 (70,75)</td>
<td>(2,27 - 3,32)</td>
<td></td>
</tr>
</tbody>
</table>
TABELA 42 (continuação)

**DISTRIBUIÇÃO DE FREQUÊNCIAS, RISCO RELATIVO E TESTES DE SIGNIFICÂNCIA
VARIAVEIS QUALITATIVAS**

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CASO</th>
<th>CONTROLE</th>
<th>RR (IC a 95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>(IC inferior)</td>
<td>(IC superior)</td>
</tr>
<tr>
<td>Lançamento das fases da fração</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vaso ou fossa (2)</td>
<td>553 (71,45)</td>
<td>573 (88,02)</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>lixo</td>
<td>8 (1,18)</td>
<td>8 (1,23)</td>
<td>1,17 (0,41 - 3,34)</td>
<td></td>
</tr>
<tr>
<td>território ou rua</td>
<td>44 (5,69)</td>
<td>18 (2,45)</td>
<td>2,65 (1,54 - 5,33)</td>
<td><0,001</td>
</tr>
<tr>
<td>tanque</td>
<td>150 (19,38)</td>
<td>52 (7,99)</td>
<td>2,99 (2,11 - 4,24)</td>
<td></td>
</tr>
<tr>
<td>córrego ou rede</td>
<td>18 (2,33)</td>
<td>2 (0,31)</td>
<td>9,33 (2,21 - 33,13)</td>
<td></td>
</tr>
<tr>
<td>Acondicionamento do lixo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>saco de lixo (2)</td>
<td>226 (22,69)</td>
<td>423 (42,38)</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>sacola de plástico</td>
<td>572 (57,43)</td>
<td>405 (40,58)</td>
<td>2,64 (2,14 - 3,26)</td>
<td></td>
</tr>
<tr>
<td>papel ou caixa de papelão</td>
<td>78 (7,32)</td>
<td>34 (3,41)</td>
<td>4,29 (2,73 - 6,79)</td>
<td><0,01</td>
</tr>
<tr>
<td>lata, bacia ou balde</td>
<td>88 (8,84)</td>
<td>65 (6,51)</td>
<td>2,53 (1,74 - 3,69)</td>
<td></td>
</tr>
<tr>
<td>não embala (2)</td>
<td>32 (3,21)</td>
<td>7 (1,11)</td>
<td>0,84 (0,53 - 1,35)</td>
<td></td>
</tr>
<tr>
<td>Disposição do lixo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>na rua, para coleta</td>
<td>682 (68,64)</td>
<td>796 (80,08)</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>caçamba da rua (2)</td>
<td>3 (0,30)</td>
<td>19 (1,91)</td>
<td>0,18 (0,04 - 0,63)</td>
<td></td>
</tr>
<tr>
<td>enterrado (1)</td>
<td>7 (0,70)</td>
<td>3 (0,30)</td>
<td>2,72 (0,62 - 18,37)</td>
<td></td>
</tr>
<tr>
<td>queimado no quintal</td>
<td>106 (10,55)</td>
<td>104 (10,46)</td>
<td>1,19 (0,88 - 1,60)</td>
<td><0,001</td>
</tr>
<tr>
<td>lote vago, quintal, rua,</td>
<td>168 (16,88)</td>
<td>67 (6,74)</td>
<td>2,93 (2,14 - 4,00)</td>
<td></td>
</tr>
<tr>
<td>erosão, lixo (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>córrego (1)</td>
<td>29 (2,91)</td>
<td>5 (0,50)</td>
<td>6,77 (2,57 - 22,50)</td>
<td></td>
</tr>
<tr>
<td>Frequência da coleta pública de lixo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diária</td>
<td>7 (1,02)</td>
<td>26 (3,20)</td>
<td>1,00 [7]</td>
<td></td>
</tr>
<tr>
<td>dias úteis</td>
<td>37 (5,42)</td>
<td>81 (6,98)</td>
<td>1,70 [5]</td>
<td></td>
</tr>
<tr>
<td>três vezes por semana</td>
<td>433 (63,40)</td>
<td>537 (66,13)</td>
<td>2,99 [3]</td>
<td><0,001</td>
</tr>
<tr>
<td>duas vezes por semana</td>
<td>139 (20,35)</td>
<td>132 (16,26)</td>
<td>3,91 [2]</td>
<td>(3)</td>
</tr>
<tr>
<td>semanal</td>
<td>55 (8,05)</td>
<td>29 (3,57)</td>
<td>7,04 [1]</td>
<td></td>
</tr>
<tr>
<td>frequência menor</td>
<td>12 (1,78)</td>
<td>7 (0,86)</td>
<td>6,37 [0,5]</td>
<td></td>
</tr>
<tr>
<td>Inundação do lote</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nunca</td>
<td>557 (55,98)</td>
<td>726 (72,89)</td>
<td>1,00 [0]</td>
<td><0,001</td>
</tr>
<tr>
<td>menos de 5 vezes por ano</td>
<td>57 (5,73)</td>
<td>45 (4,52)</td>
<td>1,65 [2,5]</td>
<td>(3)</td>
</tr>
<tr>
<td>mais de 5 vezes por ano</td>
<td>381 (38,29)</td>
<td>225 (22,59)</td>
<td>2,21 [5]</td>
<td></td>
</tr>
<tr>
<td>Empoçoamento no lote</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sim</td>
<td>268 (28,97)</td>
<td>217 (21,81)</td>
<td>1,45</td>
<td><0,001</td>
</tr>
<tr>
<td>não</td>
<td>706 (71,03)</td>
<td>778 (78,19)</td>
<td>(1,19 - 1,60)</td>
<td></td>
</tr>
<tr>
<td>Presença de moscas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nunca</td>
<td>132 (13,44)</td>
<td>164 (16,80)</td>
<td>1,00 [0]</td>
<td></td>
</tr>
<tr>
<td>menos de 1 mês por ano</td>
<td>61 (5,21)</td>
<td>84 (6,61)</td>
<td>0,90 [0,04]</td>
<td></td>
</tr>
<tr>
<td>1 mês por ano</td>
<td>18 (1,83)</td>
<td>48 (4,92)</td>
<td>0,47 [0,08]</td>
<td><0,001</td>
</tr>
<tr>
<td>3 meses por ano</td>
<td>67 (6,82)</td>
<td>128 (13,11)</td>
<td>0,85 [0,25]</td>
<td>(3)</td>
</tr>
<tr>
<td>6 meses por ano</td>
<td>190 (18,35)</td>
<td>243 (24,90)</td>
<td>0,97 [0,50]</td>
<td></td>
</tr>
<tr>
<td>todo o tempo</td>
<td>514 (52,34)</td>
<td>309 (31,66)</td>
<td>2,07 [1,00]</td>
<td></td>
</tr>
<tr>
<td>Presença de moscas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 meses por ano ou mais</td>
<td>771 (78,51)</td>
<td>680 (69,67)</td>
<td>1,59</td>
<td><0,001</td>
</tr>
<tr>
<td>1 mês por ano ou menos</td>
<td>211 (21,49)</td>
<td>296 (30,33)</td>
<td>(1,29 - 1,98)</td>
<td></td>
</tr>
<tr>
<td>Presença de mosquito</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nunca</td>
<td>56 (5,85)</td>
<td>52 (5,23)</td>
<td>1,00 [0]</td>
<td></td>
</tr>
<tr>
<td>menos de 1 mês por ano</td>
<td>19 (1,92)</td>
<td>31 (3,12)</td>
<td>0,57 [0,04]</td>
<td></td>
</tr>
<tr>
<td>1 mês por ano</td>
<td>7 (0,71)</td>
<td>7 (0,70)</td>
<td>0,93 [0,08]</td>
<td><0,001</td>
</tr>
<tr>
<td>3 meses por ano</td>
<td>44 (4,44)</td>
<td>82 (8,25)</td>
<td>0,50 [0,25]</td>
<td>(3)</td>
</tr>
<tr>
<td>6 meses por ano</td>
<td>212 (21,37)</td>
<td>258 (25,94)</td>
<td>0,76 [0,50]</td>
<td></td>
</tr>
<tr>
<td>todo o tempo</td>
<td>854 (65,93)</td>
<td>564 (56,74)</td>
<td>1,08 [1,00]</td>
<td></td>
</tr>
</tbody>
</table>
TABELA 42 (continuação)

DISTRIBUIÇÃO DE FREQÜÊNCIAS, RISCO RELATIVO E TESTES DE SIGNIFICÂNCIA VARIÁVEIS QUALITATIVAS

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CASO</th>
<th>CONTROLE</th>
<th>RR (IC a 95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presença de mosquitos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• todo o tempo</td>
<td>654 (65,93)</td>
<td>564 (56,74)</td>
<td>1,48</td>
<td><0,001</td>
</tr>
<tr>
<td>• < 6 meses por ano</td>
<td>338 (34,07)</td>
<td>430 (43,26)</td>
<td>(1,23 - 1,78)</td>
<td></td>
</tr>
<tr>
<td>Presença de baratas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• nunca</td>
<td>240 (24,22)</td>
<td>309 (31,12)</td>
<td>1,00</td>
<td>[0]</td>
</tr>
<tr>
<td>• menos de 1 mês por ano</td>
<td>82 (8,27)</td>
<td>138 (13,90)</td>
<td>0,77</td>
<td>[0,04]</td>
</tr>
<tr>
<td>• 1 mês por ano</td>
<td>40 (4,04)</td>
<td>50 (5,04)</td>
<td>1,03</td>
<td>[0,08]</td>
</tr>
<tr>
<td>• 3 meses por ano</td>
<td>99 (9,99)</td>
<td>77 (7,75)</td>
<td>1,88</td>
<td>[0,25]</td>
</tr>
<tr>
<td>• 6 meses por ano</td>
<td>112 (11,30)</td>
<td>134 (13,49)</td>
<td>1,08</td>
<td>[0,50]</td>
</tr>
<tr>
<td>• todo o tempo</td>
<td>418 (42,18)</td>
<td>285 (28,70)</td>
<td>1,89</td>
<td>[1,00]</td>
</tr>
<tr>
<td>Presença de baratas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 meses por ano ou mais</td>
<td>629 (63,47)</td>
<td>496 (49,95)</td>
<td>1,74</td>
<td><0,001</td>
</tr>
<tr>
<td>• 1 mês por ano ou menos</td>
<td>362 (36,53)</td>
<td>497 (50,05)</td>
<td>(1,45 - 2,09)</td>
<td></td>
</tr>
<tr>
<td>Presença de ratos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• nunca</td>
<td>435 (43,98)</td>
<td>584 (58,87)</td>
<td>1,00</td>
<td>[0]</td>
</tr>
<tr>
<td>• < 1 vez por ano</td>
<td>57 (5,76)</td>
<td>82 (8,27)</td>
<td>0,93</td>
<td>[0,5]</td>
</tr>
<tr>
<td>• ≥ 1 vez por ano</td>
<td>53 (5,36)</td>
<td>47 (4,74)</td>
<td>1,51</td>
<td>[1]</td>
</tr>
<tr>
<td>• ≥ 1 vez por semestre</td>
<td>41 (4,16)</td>
<td>55 (5,54)</td>
<td>1,00</td>
<td>[2]</td>
</tr>
<tr>
<td>• ≥ 1 vez por mês</td>
<td>90 (9,10)</td>
<td>66 (6,65)</td>
<td>1,83</td>
<td>[12]</td>
</tr>
<tr>
<td>• ≥ 1 vez por semana</td>
<td>313 (31,65)</td>
<td>158 (15,53)</td>
<td>2,66</td>
<td>[52]</td>
</tr>
<tr>
<td>Presença de ratos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ≥ 1 vez por semestre</td>
<td>444 (44,89)</td>
<td>279 (28,13)</td>
<td>2,08</td>
<td><0,001</td>
</tr>
<tr>
<td>• ≤ 1 vez por ano</td>
<td>545 (55,11)</td>
<td>713 (71,88)</td>
<td>(1,72 - 2,52)</td>
<td></td>
</tr>
</tbody>
</table>

1. excluídas respostas "não sabe" e recusas, quando totalizam frequência inferior a 10%
2. (1) categoria com proporção de casos significativamente superior
(2) categoria com proporção de casos significativamente inferior
3. [] score atribuído, para efeito da análise de tendência
4. (3) p referente à análise de tendência
5. adicionada uma unidade ao score, quando família era proprietária de outro imóvel
7.7- ANEXO G

ANÁLISE BIVARIADA - RESULTADOS
<table>
<thead>
<tr>
<th>VARIÁVEL (V)</th>
<th>EXPOSIÇÃO (E)</th>
<th>OR (EV/-D)</th>
<th>OR (DV/E)</th>
<th>OR</th>
<th>ORbruto (1)</th>
<th>ORajust (2)</th>
<th>Δ (1/2) (%)</th>
<th>ORT</th>
<th>ORadit.</th>
<th>S (p)</th>
<th>ORmult</th>
<th>PWoox</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELMAE POSSETV</td>
<td>0.98</td>
<td>5.26</td>
<td>2.28</td>
<td>1.82</td>
<td>2.25</td>
<td>2.27</td>
<td>1</td>
<td>5.37</td>
<td>6.54</td>
<td>1.87</td>
<td>(0.05)</td>
<td>11.99</td>
</tr>
<tr>
<td>M/C</td>
<td>1.65</td>
<td>0.25</td>
<td>4.39</td>
<td>2.48</td>
<td>2.50</td>
<td>2.50</td>
<td>0</td>
<td>0.62</td>
<td>3.64</td>
<td>-7.34</td>
<td>(0.05)</td>
<td>1.10</td>
</tr>
<tr>
<td>RESMAE BANH</td>
<td>1.60</td>
<td>2.78</td>
<td>2.12</td>
<td>0.84</td>
<td>2.09</td>
<td>2.09</td>
<td>0</td>
<td>2.34</td>
<td>3.90</td>
<td>-1.33</td>
<td>(0.05)</td>
<td>5.89</td>
</tr>
<tr>
<td>GELAD</td>
<td>1.44</td>
<td>2.93</td>
<td>3.44</td>
<td>1.41</td>
<td>3.39</td>
<td>3.40</td>
<td>0</td>
<td>1.17</td>
<td>3.85</td>
<td>0.12</td>
<td>(0.05)</td>
<td>4.85</td>
</tr>
<tr>
<td>CRIANC ORIGAGUA</td>
<td>1.85</td>
<td>2.02</td>
<td>2.68</td>
<td>2.09</td>
<td>2.61</td>
<td>2.42</td>
<td>0</td>
<td>4.23</td>
<td>3.70</td>
<td>0.41</td>
<td>(0.05)</td>
<td>5.41</td>
</tr>
<tr>
<td>DISPLIXO</td>
<td>1.07</td>
<td>1.86</td>
<td>1.82</td>
<td>2.38</td>
<td>2.05</td>
<td>1.99</td>
<td>3</td>
<td>4.43</td>
<td>2.68</td>
<td>1.22</td>
<td>(0.05)</td>
<td>3.39</td>
</tr>
<tr>
<td>EMPOC</td>
<td>1.03</td>
<td>2.02</td>
<td>1.42</td>
<td>1.52</td>
<td>1.46</td>
<td>1.45</td>
<td>1</td>
<td>3.05</td>
<td>2.44</td>
<td>0.45</td>
<td>(0.05)</td>
<td>2.87</td>
</tr>
<tr>
<td>ORDEM ORIGAGUA</td>
<td>1.48</td>
<td>2.86</td>
<td>2.66</td>
<td>2.18</td>
<td>2.67</td>
<td>2.55</td>
<td>5</td>
<td>6.25</td>
<td>4.52</td>
<td>1.38</td>
<td>(0.05)</td>
<td>7.61</td>
</tr>
<tr>
<td>DISPLIXO</td>
<td>1.28</td>
<td>2.56</td>
<td>1.64</td>
<td>2.38</td>
<td>2.06</td>
<td>1.93</td>
<td>7</td>
<td>6.08</td>
<td>3.40</td>
<td>1.93</td>
<td>(0.05)</td>
<td>4.71</td>
</tr>
<tr>
<td>EMPOC</td>
<td>0.98</td>
<td>2.91</td>
<td>1.47</td>
<td>1.46</td>
<td>1.46</td>
<td>1.47</td>
<td>1</td>
<td>4.24</td>
<td>3.38</td>
<td>0.64</td>
<td>(0.05)</td>
<td>4.28</td>
</tr>
<tr>
<td>LOCAL ORIGAGUA</td>
<td>1.78</td>
<td>1.44</td>
<td>10.10</td>
<td>2.34</td>
<td>2.66</td>
<td>2.68</td>
<td>1</td>
<td>3.36</td>
<td>10.54</td>
<td>-4.97</td>
<td>(0.05)</td>
<td>14.54</td>
</tr>
<tr>
<td>DISPESG</td>
<td>1.88</td>
<td>1.69</td>
<td>3.32</td>
<td>1.95</td>
<td>2.05</td>
<td>2.03</td>
<td>1</td>
<td>3.29</td>
<td>4.01</td>
<td>-0.39</td>
<td>(0.05)</td>
<td>5.61</td>
</tr>
<tr>
<td>DISPLIXO</td>
<td>1.18</td>
<td>1.19</td>
<td>1.50</td>
<td>2.09</td>
<td>2.06</td>
<td>2.05</td>
<td>0</td>
<td>2.50</td>
<td>1.69</td>
<td>0.58</td>
<td>(0.05)</td>
<td>1.79</td>
</tr>
<tr>
<td>EMPOC</td>
<td>0.88</td>
<td>1.29</td>
<td>1.33</td>
<td>1.48</td>
<td>1.46</td>
<td>0</td>
<td>1.91</td>
<td>1.62</td>
<td>0.20</td>
<td>(0.05)</td>
<td>1.72</td>
<td>>0.05</td>
</tr>
<tr>
<td>HIGDEF</td>
<td>0.87</td>
<td>1.38</td>
<td>2.21</td>
<td>2.39</td>
<td>2.37</td>
<td>2.38</td>
<td>0</td>
<td>3.31</td>
<td>2.59</td>
<td>0.35</td>
<td>(0.05)</td>
<td>3.05</td>
</tr>
<tr>
<td>VARIÁVEL (V)</td>
<td>EXPOSIÇÃO (E)</td>
<td>OR (EV=1)</td>
<td>OR (DV=E)</td>
<td>V-</td>
<td>V+</td>
<td>OR_trunto (1)</td>
<td>OR_núm (2)</td>
<td>Δ (1/2) (%)</td>
<td>OR_T</td>
<td>OR_adit.</td>
<td>S (p)</td>
<td>OR_mult</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>INSTMAE</td>
<td>ORIGAGUA</td>
<td>3,03</td>
<td>2,32</td>
<td>4,33</td>
<td>2,34</td>
<td>2,91</td>
<td>2,58</td>
<td>13</td>
<td>5,44</td>
<td>5,65</td>
<td>-0,123</td>
<td>10,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,84-16,56)</td>
<td>(1,89-2,88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>DISPESG</td>
<td>3,03</td>
<td>2,47</td>
<td>2,32</td>
<td>1,63</td>
<td>2,10</td>
<td>1,82</td>
<td>15</td>
<td>4,03</td>
<td>3,79</td>
<td>0,09</td>
<td>5,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,29-4,02)</td>
<td>(1,80-3,38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>EMPOC</td>
<td>1,04</td>
<td>2,05</td>
<td>0,96</td>
<td>1,63</td>
<td>1,48</td>
<td>1,42</td>
<td>4</td>
<td>3,34</td>
<td>2,01</td>
<td>0,74</td>
<td>1,97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,75-1,44)</td>
<td>(1,63-2,59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(<0,01)</td>
</tr>
<tr>
<td></td>
<td>BANH</td>
<td>9,75</td>
<td>2,21</td>
<td>3,47</td>
<td>1,59</td>
<td>2,10</td>
<td>1,71</td>
<td>23</td>
<td>3,53</td>
<td>4,68</td>
<td>-0,60</td>
<td>7,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4,89-20,02)</td>
<td>(1,78-2,75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td>INSTOUT</td>
<td>DISPESG</td>
<td>2,49</td>
<td>2,34</td>
<td>3,09</td>
<td>2,10</td>
<td>2,32</td>
<td>2,19</td>
<td>6</td>
<td>4,90</td>
<td>4,43</td>
<td>0,13</td>
<td>7,23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,89-7,14)</td>
<td>(0,75-8,68)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>EMPOC</td>
<td>1,25</td>
<td>2,54</td>
<td>1,58</td>
<td>1,15</td>
<td>1,20</td>
<td>1,19</td>
<td>1</td>
<td>2,92</td>
<td>3,12</td>
<td>-0,08</td>
<td>4,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,49-4,83)</td>
<td>(1,00-6,62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td>POSSETV</td>
<td>ORIGAGUA</td>
<td>3,81</td>
<td>2,20</td>
<td>1,98</td>
<td>2,13</td>
<td>2,87</td>
<td>2,09</td>
<td>28</td>
<td>4,68</td>
<td>3,18</td>
<td>1,01</td>
<td>4,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1,34-12,33)</td>
<td>(1,82-2,65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>DISPESG</td>
<td>2,78</td>
<td>2,10</td>
<td>1,75</td>
<td>1,70</td>
<td>2,08</td>
<td>1,73</td>
<td>19</td>
<td>3,56</td>
<td>2,85</td>
<td>0,37</td>
<td>3,68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,09-3,68)</td>
<td>(1,52-2,89)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>DISPLIXO</td>
<td>3,06</td>
<td>2,14</td>
<td>1,98</td>
<td>1,59</td>
<td>2,06</td>
<td>1,74</td>
<td>18</td>
<td>3,39</td>
<td>3,12</td>
<td>0,17</td>
<td>4,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,17-4,33)</td>
<td>(1,72-2,65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>BANH</td>
<td>6,73</td>
<td>1,90</td>
<td>0,99</td>
<td>1,70</td>
<td>2,09</td>
<td>1,52</td>
<td>38</td>
<td>3,23</td>
<td>1,89</td>
<td>0,91</td>
<td>1,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4,37-10,41)</td>
<td>(1,54-2,34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(<0,01)</td>
</tr>
<tr>
<td></td>
<td>HIGDEF</td>
<td>1,75</td>
<td>1,87</td>
<td>2,20</td>
<td>2,16</td>
<td>2,37</td>
<td>2,18</td>
<td>9</td>
<td>4,02</td>
<td>3,07</td>
<td>0,47</td>
<td>4,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1,19-2,59)</td>
<td>(1,47-2,37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td>COZINHA</td>
<td>ORIGAGUA</td>
<td>3,17</td>
<td>2,96</td>
<td>2,38</td>
<td>1,84</td>
<td>2,66</td>
<td>2,19</td>
<td>21</td>
<td>5,44</td>
<td>4,34</td>
<td>0,86</td>
<td>7,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,87-9,55)</td>
<td>(2,28-3,85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>DISPESG</td>
<td>2,61</td>
<td>2,96</td>
<td>1,84</td>
<td>1,69</td>
<td>2,05</td>
<td>1,82</td>
<td>13</td>
<td>5,00</td>
<td>3,80</td>
<td>0,71</td>
<td>5,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1,62-4,24)</td>
<td>(1,77-4,96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>DISPLIXO</td>
<td>2,29</td>
<td>2,88</td>
<td>1,90</td>
<td>1,65</td>
<td>2,07</td>
<td>1,84</td>
<td>13</td>
<td>4,76</td>
<td>3,78</td>
<td>0,71</td>
<td>5,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1,42-3,69)</td>
<td>(2,11-3,95)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td></td>
<td>EMPOC</td>
<td>1,10</td>
<td>2,91</td>
<td>1,40</td>
<td>1,58</td>
<td>1,47</td>
<td>1,43</td>
<td>3</td>
<td>4,60</td>
<td>3,31</td>
<td>0,98</td>
<td>4,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,68-1,84)</td>
<td>(2,16-3,93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(>0,05)</td>
</tr>
<tr>
<td>VARIÁVEL (V)</td>
<td>EXPOSIÇÃO (E)</td>
<td>OR (EV=D)</td>
<td>OR (DV=E)</td>
<td>V−</td>
<td>V+</td>
<td>OR_bruto (1)</td>
<td>OR_adjust (2)</td>
<td>Δ (1/2) (%)</td>
<td>OR_T</td>
<td>OR_adit.</td>
<td>S (p)</td>
<td>OR_mult</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>COZINHA</td>
<td>HIGDEF</td>
<td>2,10</td>
<td>2,95</td>
<td>2,14</td>
<td>2,06</td>
<td>2,38</td>
<td>2,12</td>
<td>12</td>
<td>6,09</td>
<td>4,09</td>
<td>1,13</td>
<td>6,31</td>
</tr>
<tr>
<td>M/C</td>
<td>ORIGAGUA</td>
<td>3,12</td>
<td>2,44</td>
<td>2,19</td>
<td>2,12</td>
<td>2,66</td>
<td>2,14</td>
<td>24</td>
<td>5,18</td>
<td>3,63</td>
<td>0,94</td>
<td>5,34</td>
</tr>
<tr>
<td></td>
<td>(1,09-10,09)</td>
<td>(2,02-2,95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1,92-3,31)</td>
<td>(1,75-3,24)</td>
<td></td>
</tr>
<tr>
<td>DISPESG</td>
<td>ORIGAGUA</td>
<td>1,47</td>
<td>2,50</td>
<td>1,42</td>
<td>1,32</td>
<td>1,47</td>
<td>1,36</td>
<td>8</td>
<td>3,31</td>
<td>2,92</td>
<td>0,22</td>
<td>3,55</td>
</tr>
<tr>
<td></td>
<td>(1,07-2,01)</td>
<td>(2,02-3,11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1,06-2,32)</td>
<td>(1,58-2,55)</td>
<td></td>
</tr>
<tr>
<td>DISPLIXO</td>
<td>ORIGAGUA</td>
<td>16,79</td>
<td>1,99</td>
<td>4,59</td>
<td>2,07</td>
<td>2,77</td>
<td>2,18</td>
<td>27</td>
<td>4,14</td>
<td>5,58</td>
<td>-0,94</td>
<td>9,13</td>
</tr>
<tr>
<td></td>
<td>(2,61-70,03)</td>
<td>(1,65-2,41)</td>
<td></td>
</tr>
<tr>
<td>EMPOC</td>
<td>ORIGAGUA</td>
<td>10,06</td>
<td>1,85</td>
<td>2,66</td>
<td>1,58</td>
<td>2,11</td>
<td>1,71</td>
<td>23</td>
<td>2,92</td>
<td>3,51</td>
<td>-0,36</td>
<td>4,92</td>
</tr>
<tr>
<td></td>
<td>(6,05-16,89)</td>
<td>(1,49-2,28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6,08-2,04)</td>
<td>(1,72-2,67)</td>
<td></td>
</tr>
<tr>
<td>HIGDEF</td>
<td>ORIGAGUA</td>
<td>1,34</td>
<td>1,85</td>
<td>2,23</td>
<td>2,32</td>
<td>2,40</td>
<td>2,29</td>
<td>5</td>
<td>4,30</td>
<td>3,08</td>
<td>0,57</td>
<td>4,13</td>
</tr>
<tr>
<td></td>
<td>(0,90-2,01)</td>
<td>(1,45-2,37)</td>
<td></td>
</tr>
<tr>
<td>ORIGAGUA</td>
<td>DISPLIXO</td>
<td>13,75</td>
<td>2,89</td>
<td>1,99</td>
<td>1,10</td>
<td>2,06</td>
<td>1,95</td>
<td>6</td>
<td>3,18</td>
<td>3,88</td>
<td>-0,58</td>
<td>5,75</td>
</tr>
<tr>
<td></td>
<td>(4,58-49,25)</td>
<td>(0,94-10,51)</td>
<td></td>
</tr>
<tr>
<td>EMPOC</td>
<td>DISPLIXO</td>
<td>2,76</td>
<td>1,48</td>
<td>1,54</td>
<td>1,46</td>
<td>1,46</td>
<td>1,46</td>
<td>0</td>
<td>4,26</td>
<td>3,22</td>
<td>0,92</td>
<td>4,03</td>
</tr>
<tr>
<td></td>
<td>(0,24-3,31)</td>
<td>(1,42-5,45)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,10-4,30)</td>
<td>(1,65-5,31)</td>
<td></td>
</tr>
<tr>
<td>HIGDEF</td>
<td>DISPLIXO</td>
<td>1,81</td>
<td>2,22</td>
<td>1,51</td>
<td>1,10</td>
<td>1,46</td>
<td>1,38</td>
<td>6</td>
<td>2,43</td>
<td>2,73</td>
<td>-0,22</td>
<td>3,35</td>
</tr>
<tr>
<td></td>
<td>(1,24-2,64)</td>
<td>(1,71-2,87)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1,23-2,17)</td>
<td>(1,71-2,87)</td>
<td></td>
</tr>
<tr>
<td>DISPLIXO</td>
<td>EMPOC</td>
<td>1,23</td>
<td>1,63</td>
<td>2,04</td>
<td>2,93</td>
<td>2,36</td>
<td>2,25</td>
<td>5</td>
<td>4,78</td>
<td>2,67</td>
<td>1,25</td>
<td>3,33</td>
</tr>
<tr>
<td></td>
<td>(0,78-1,99)</td>
<td>(1,23-2,17)</td>
<td></td>
</tr>
<tr>
<td>VARIÁVEL</td>
<td>EXPOSIÇÃO (E)</td>
<td>OR (EV-D)</td>
<td>OR (DV-E)</td>
<td>V-</td>
<td>V+</td>
<td>ORbruto (1)</td>
<td>ORajust (2)</td>
<td>Δ (1/2) (%)</td>
<td>ORT</td>
<td>ORadit.</td>
<td>S (p)</td>
<td>ORmult</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>HIGDEF</td>
<td>EMPOC</td>
<td>1,42</td>
<td>2,28</td>
<td>1,52</td>
<td>1,52</td>
<td>1,60</td>
<td>1,52</td>
<td>5</td>
<td>3,46</td>
<td>2,80</td>
<td>0,40</td>
<td>3,47</td>
</tr>
<tr>
<td></td>
<td>(0,91-2,23)</td>
<td>(1,68-3,10)</td>
<td></td>
<td></td>
<td></td>
<td>(1,60)</td>
<td>(1,52)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISPEG</td>
<td>MOSCAS</td>
<td>1,97</td>
<td>1,61</td>
<td>1,24</td>
<td>1,58</td>
<td>1,59</td>
<td>1,40</td>
<td>14</td>
<td>2,55</td>
<td>1,85</td>
<td>0,41</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>(1,47-2,64)</td>
<td>(1,11-2,35)</td>
<td></td>
<td></td>
<td></td>
<td>(1,59)</td>
<td>(1,40)</td>
<td>(14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOSQ</td>
<td>2,26</td>
<td>1,98</td>
<td>1,30</td>
<td>1,29</td>
<td>1,47</td>
<td>1,29</td>
<td>14</td>
<td>2,54</td>
<td>2,28</td>
<td>0,15</td>
<td>2,57</td>
</tr>
<tr>
<td></td>
<td>(1,73-2,95)</td>
<td>(1,46-2,68)</td>
<td></td>
<td></td>
<td></td>
<td>(1,47)</td>
<td>(1,29)</td>
<td>(14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARATAS</td>
<td>0,96</td>
<td>1,47</td>
<td>1,17</td>
<td>2,06</td>
<td>1,70</td>
<td>1,53</td>
<td>4</td>
<td>3,02</td>
<td>1,64</td>
<td>0,83</td>
<td>1,72</td>
</tr>
<tr>
<td></td>
<td>(0,74-1,25)</td>
<td>(1,10-1,95)</td>
<td></td>
<td></td>
<td></td>
<td>(1,70)</td>
<td>(1,53)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATOS</td>
<td>1,49</td>
<td>1,82</td>
<td>1,71</td>
<td>1,99</td>
<td>2,02</td>
<td>1,88</td>
<td>7</td>
<td>3,62</td>
<td>2,53</td>
<td>0,61</td>
<td>3,11</td>
</tr>
<tr>
<td></td>
<td>(1,11-1,99)</td>
<td>(1,44-2,31)</td>
<td></td>
<td></td>
<td></td>
<td>(2,02)</td>
<td>(1,88)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISPLIXO</td>
<td>MOSCAS</td>
<td>1,78</td>
<td>1,73</td>
<td>1,42</td>
<td>1,70</td>
<td>1,58</td>
<td>1,47</td>
<td>7</td>
<td>2,94</td>
<td>2,15</td>
<td>0,52</td>
<td>2,48</td>
</tr>
<tr>
<td></td>
<td>(1,17-2,66)</td>
<td>(1,04-2,88)</td>
<td></td>
<td></td>
<td></td>
<td>(1,70)</td>
<td>(1,58)</td>
<td>(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOSQ</td>
<td>1,42</td>
<td>1,80</td>
<td>1,36</td>
<td>1,60</td>
<td>1,48</td>
<td>1,41</td>
<td>5</td>
<td>2,88</td>
<td>2,16</td>
<td>0,51</td>
<td>2,45</td>
</tr>
<tr>
<td></td>
<td>(1,00-2,01)</td>
<td>(1,23-2,63)</td>
<td></td>
<td></td>
<td></td>
<td>(1,48)</td>
<td>(1,41)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARATAS</td>
<td>1,07</td>
<td>1,49</td>
<td>1,50</td>
<td>2,47</td>
<td>1,75</td>
<td>1,68</td>
<td>4</td>
<td>3,88</td>
<td>1,99</td>
<td>1,13</td>
<td>2,24</td>
</tr>
<tr>
<td></td>
<td>(0,73-1,44)</td>
<td>(1,05-2,11)</td>
<td></td>
<td></td>
<td></td>
<td>(1,75)</td>
<td>(1,68)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATOS</td>
<td>1,75</td>
<td>2,03</td>
<td>2,01</td>
<td>2,01</td>
<td>2,06</td>
<td>1,94</td>
<td>6</td>
<td>3,57</td>
<td>3,04</td>
<td>0,35</td>
<td>4,08</td>
</tr>
<tr>
<td></td>
<td>(1,23-2,50)</td>
<td>(1,52-2,70)</td>
<td></td>
<td></td>
<td></td>
<td>(2,06)</td>
<td>(1,94)</td>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGENDA:
- **V:** presença da variável em análise;
- **E:** expostos;
- **D:** controles;
- **OR/C-:** OR da exposição, na ausência da variável C;
- **ORbruto:** OR bruto da exposição;
- **(1/2) (%):** diferença percentual entre o **ORbruto** e o **ORajust**;
- **ORT:** OR entre o grupo exposto e com a variável V e o grupo não exposto e sem a variável V;
- **ORadit:** OR esperado pelo modelo aditivo;
- **ORmult:** OR esperado pelo modelo multiplicativo;
- **~V:** ausência da variável em análise;
- **~E:** não expostos;
- **~D:** controles;
- **OR/C+:** OR da exposição, na presença da variável C;
- **ORajust:** OR ajustado de Mantel-Haenszel da exposição;
- **S(z^2):** S para teste de sinergismo (significância do qui-quadrado para S = 0);
- **P_W Woolf:** significância do qui-quadrado de Woolf.
7.8- ANEXO H

DEFINIÇÃO DAS CATEGORIAS - ANÁLISE MULTIVARIADA
TABELA 44
DEFINIÇÃO DAS CATEGORIAS - ANÁLISE MULTIVARIADA

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>VARIÁVEL</th>
<th>NÍVEL</th>
<th>SIGNIFICADO</th>
<th>MODELO FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTRUTURA FAMILIAR</td>
<td>1- RESMAE</td>
<td>1</td>
<td>sim</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>não</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2- RESPAN</td>
<td>1</td>
<td>sim</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>não</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3- CRIANC</td>
<td></td>
<td>variável contínua</td>
<td>variável contínua</td>
</tr>
<tr>
<td>(nº crianças < 5 anos na casa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4- ORDEM</td>
<td></td>
<td>variável contínua</td>
<td></td>
</tr>
<tr>
<td>(de nascimento)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5- IDCRIANC</td>
<td></td>
<td>variável contínua</td>
<td>variável contínua</td>
</tr>
<tr>
<td>(anos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6- SEXO</td>
<td>1</td>
<td>masculino</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>feminino</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7- NUMPESSO</td>
<td></td>
<td>variável contínua</td>
<td></td>
</tr>
<tr>
<td>(residentes na casa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8- LOCAL</td>
<td>1</td>
<td>em casa</td>
<td></td>
</tr>
<tr>
<td>(onde fica a criança)</td>
<td></td>
<td>2</td>
<td>creche, 1 turno</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>creche, tempo integral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9- INSTMAE</td>
<td>1</td>
<td>2º grau completo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2º grau incompleto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1º grau completo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1º grau incompleto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>instrução inferior</td>
<td></td>
</tr>
</tbody>
</table>
TABELA 44 (continuação)
DEFINIÇÃO DAS CATEGORIAS - ANÁLISE MULTIVARIADA

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>VARIÁVEL</th>
<th>NÍVEL</th>
<th>SIGNIFICADO</th>
<th>NÍVEL</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTRUTURA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAMILIAR</td>
<td>10- INSTPAI</td>
<td>1</td>
<td>2º grau completo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2º grau incompleto</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1º grau completo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1º grau incompleto</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>instrução inferior</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88</td>
<td>pai não vive na casa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11- INSTPAI</td>
<td></td>
<td></td>
<td>11</td>
<td>não lê, nem escreve</td>
</tr>
<tr>
<td></td>
<td>(instrução do chefe da família: pai, quando reside; mãe, quando o pai não reside)</td>
<td></td>
<td></td>
<td>10</td>
<td>lê e/ou escreve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1º grau incompleto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>1º grau completo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2º grau incompleto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>2º grau incompleto ou mais</td>
</tr>
<tr>
<td></td>
<td>12- IDMAE</td>
<td></td>
<td>variável contínua</td>
<td></td>
<td>variável contínua</td>
</tr>
<tr>
<td></td>
<td>(anos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13- IDMEDIA</td>
<td></td>
<td>variável contínua</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(crianças < 5 anos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14- RELMAE</td>
<td>1</td>
<td>com religião</td>
<td>1</td>
<td>com religião</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>sem religião</td>
<td>2</td>
<td>sem religião</td>
</tr>
<tr>
<td></td>
<td>15- RELPAI</td>
<td>1</td>
<td>com religião</td>
<td>1</td>
<td>com religião</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>sem religião</td>
<td>2</td>
<td>sem religião</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88</td>
<td>pai não vive na casa</td>
<td>88</td>
<td>pai não vive na casa</td>
</tr>
<tr>
<td>GRUPO</td>
<td>VARIÁVEL</td>
<td>NÍVEL</td>
<td>SIGNIFICADO</td>
<td>NÍVEL</td>
<td>SIGNIFICADO</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------------------------</td>
<td>-------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>NÍVEL</td>
<td>16- PROPR</td>
<td>0</td>
<td>mais de um imóvel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SÓCIO-ECONÔMICO</td>
<td></td>
<td>1</td>
<td>casa própria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>casa hipotecada</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>invasão, alugada, cedida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17- TV</td>
<td></td>
<td>0</td>
<td>mais de 1</td>
<td>0</td>
<td>mais de 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>em cores</td>
<td>1</td>
<td>em cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>PB</td>
<td>2</td>
<td>PB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>não tem</td>
<td>3</td>
<td>não tem</td>
</tr>
<tr>
<td>18- BANH</td>
<td></td>
<td>0</td>
<td>mais de 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>interno</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>externo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>não tem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19- COZ</td>
<td></td>
<td>0</td>
<td>não possue</td>
<td>1</td>
<td>possue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>possue</td>
<td>2</td>
<td>não possue</td>
</tr>
<tr>
<td>20- GEL</td>
<td></td>
<td>0</td>
<td>não possue</td>
<td>1</td>
<td>possue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>possue</td>
<td>2</td>
<td>não possue</td>
</tr>
<tr>
<td>21- M/C</td>
<td></td>
<td></td>
<td>variável contínua</td>
<td></td>
<td>variável contínua</td>
</tr>
<tr>
<td>(morador/cômodo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22- CLASSM</td>
<td></td>
<td>3</td>
<td>< 0,60 s.m per capita</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(classificação de Marcondes)</td>
<td></td>
<td>4</td>
<td>> 0,60 s.m. per capita</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GRUPO</td>
<td>VARIÁVEL</td>
<td>NÍVEL</td>
<td>SIGNIFICADO</td>
<td>NÍVEL</td>
<td>SIGNIFICADO</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>---------------------------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>HÁBITOS HIGIÉNICOS</td>
<td>23- PREPBEB (preparação água de beber)</td>
<td>0</td>
<td>não prepara</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>serve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>desinf., filtra ou água mineral</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24- PREPALIM (preparação de frutas e verduras)</td>
<td>0</td>
<td>não prepara</td>
<td>0</td>
<td>não prepara</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>lava</td>
<td>1</td>
<td>lava</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>desinfeta</td>
<td>2</td>
<td>desinfeta</td>
</tr>
<tr>
<td></td>
<td>25- HIGALIM (higiene das mãos antes de se alimentar)</td>
<td>1</td>
<td>quase sempre (água, sabão)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>quase sempre (água)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pequena frequência</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>não</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26- HIGDEF (higiene das mãos após defecar)</td>
<td>1</td>
<td>quase sempre (água, sabão)</td>
<td>1</td>
<td>quase sempre (água, sabão)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>quase sempre (água)</td>
<td>2</td>
<td>quase sempre (água)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pequena frequência</td>
<td>3</td>
<td>pequena frequência</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>não</td>
<td>4</td>
<td>não</td>
</tr>
<tr>
<td>ABASTECIMENTO DE Água</td>
<td>27- ORIGAGUA</td>
<td>1</td>
<td>rede pública</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>poço</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>caminhão-pipa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>mais de 1 fonte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28- FALTAGUA</td>
<td>1</td>
<td>1 vez por dia</td>
<td>1</td>
<td>rede pública / não falta (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1 vez por semana</td>
<td>2</td>
<td>rede pública / falta (1-4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1 vez por mês</td>
<td>3</td>
<td>água de outra origem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>menos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>nunca</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>água de outra origem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29- QPC/10 (l/hab dia, assumindo não hidrometrados como 10 m³/mês)</td>
<td></td>
<td>variável contínua</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABELA 44 (continuação)
DEFINIÇÃO DAS CATEGORIAS - ANÁLISE MULTIVARIADA

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>VARIÁVEL</th>
<th>ANÁLISE POR SUBGRUPO</th>
<th>MODELO FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABASTECIMENTO DE ÁGUA</td>
<td>30- CAIXA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>coberta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>não coberta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>armazena em vasilhame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>direto da rede</td>
<td></td>
</tr>
<tr>
<td>31- LIMPCAIX</td>
<td>1</td>
<td>1 vez por trimestre</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1 vez por semestre</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 vez por ano</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>menos</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>nunca</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>não tem caixa</td>
<td>6</td>
</tr>
<tr>
<td>ESGOTAMENTO SANITÁRIO</td>
<td>32- DISPESG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>rede pública</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>fossa</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>rua ou córrego</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>terreno</td>
<td>4</td>
</tr>
<tr>
<td>33- ESCOAM (esgoto escoando na rua)</td>
<td>1</td>
<td>sim</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>não</td>
<td>1</td>
</tr>
<tr>
<td>34- EXISTCOR</td>
<td>1</td>
<td>sim</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>não</td>
<td>2</td>
</tr>
<tr>
<td>GRUPO</td>
<td>VARIÁVEL</td>
<td>NÍVEL</td>
<td>SIGNIFICADO</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>DISPOSIÇÃO DE LIXO</td>
<td>36- ACOND</td>
<td>1</td>
<td>saco de lixo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>sacola de plástico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>papel, caixa papelão</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>lata, bacia, balde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>não embala</td>
</tr>
<tr>
<td></td>
<td>37- DISPLIXO</td>
<td>1</td>
<td>rua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>caçamba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>enterrado, fossa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>queimado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>lote vago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>córrego</td>
</tr>
<tr>
<td></td>
<td>38- FREQLIXO</td>
<td>1</td>
<td>todos os dias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>dias úteis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3 vezes por semana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2 vezes por semana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1 vez por semana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>menos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>não há coleta</td>
</tr>
<tr>
<td>26- LANCFEZ</td>
<td>(disposição das fezes)</td>
<td>0</td>
<td>não usa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>vaso/fossa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>lixo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>terreno/rua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>tanque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>córrego/rede</td>
</tr>
<tr>
<td>ÁGUA DE CHUVA</td>
<td>39- INUND</td>
<td>1</td>
<td>+ de 5 vezes/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>- de 5 vezes/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>nunca</td>
</tr>
<tr>
<td>40- EMPOC</td>
<td></td>
<td>1</td>
<td>sim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>não</td>
</tr>
<tr>
<td>GRUPO</td>
<td>VARIÁVEL</td>
<td>NÍVEL</td>
<td>SIGNIFICADO</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>VETORES</td>
<td>41- MOSCAS</td>
<td>1</td>
<td>todo o tempo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pelo menos 6 meses/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pelo menos 3 meses/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pelo menos 1 mês/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>menos de 1 mês/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>nunca</td>
</tr>
<tr>
<td></td>
<td>42- MOSQ</td>
<td>1</td>
<td>todo o tempo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pelo menos 6 meses/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pelo menos 3 meses/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pelo menos 1 mês/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>menos de 1 mês/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>nunca</td>
</tr>
<tr>
<td></td>
<td>43- BARATAS</td>
<td>1</td>
<td>todo o tempo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pelo menos 6 meses/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pelo menos 3 meses/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pelo menos 1 mês/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>menos de 1 mês/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>nunca</td>
</tr>
<tr>
<td></td>
<td>44- RATOS</td>
<td>1</td>
<td>pelo menos 1 vez/semana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pelo menos 1 vez/mês</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pelo menos 1 vez/semente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pelo menos 1 vez/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>menos de 1 vez/ano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>nunca</td>
</tr>
</tbody>
</table>
7.9- ANEXO I

ANÁLISE MULTIVARIADA - RESULTADOS
ESTRUTURA FAMILIAR

MULTA - Release 77/89

MULTITA LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

Ludwig Institute for Cancer Research - BP Branch

Epidemiology and Biostatistics Unit

Copyright (C) 1985 LIRC/89

TITLE : ESTRUTURA FAMILIAR

VARIABLES PRESENT IN FILE

```
1 DIABETES  2 RESHA  3 RESHA  4 CRANP  5 ORDER  6 IDRHAPC  7 SEXO  8 MEMBERNO  9 LOCAL  10 ENTRADA  11 ENTRADA  12 IDMAN  13 IDHOM1A  14 RESHA  15 KSELPA
```

VARIABLES TO BE USED

```
OUTCOME ................ DIABETES
```

RESTRICTION

```
Variable .............. KSELPA
Value ................. 19.00
Operand ............... <
```

RUNTIME CHARACTERISTICS

```
Program ............... MULTA [WITH 80187 SUPPORT]
Release .............. C:\ARCHIVOS\DATA\MULTA.RES
Dictionary ............ C:\ARCHIVOS\TEST\MULTA.DIC
Date ................... Saturday, Mar 10, 1989
Time .................. 11:49:53.69
```
Multiple Logistic Regression by Unconditional and Conditional Methods

Coefficient Table

<table>
<thead>
<tr>
<th>Category</th>
<th>Term</th>
<th>Coeff.</th>
<th>S.E.</th>
<th>Z-Score</th>
<th>P-Value</th>
<th>O.R.</th>
<th>Lower</th>
<th>Upper</th>
<th>Ref категории</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Model Characteristics

- **Likelihood (Cycle 1)**: -2313.3743
- **Likelihood (Cycle 2)**: -2378.5262
- **-2 Log Likelihood**: 2381.0123

Model Building Statistics

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>D.F.</th>
<th>P-Value</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>257.9776</td>
<td>3</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>275.7344</td>
<td>3</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Criteria and Model Building Characteristics

- **Analysis (Likelihood)**: Unconditional
- **Tolerance**
- **Convergence**
- **Iterations**
- **Confidence Level**
- **Records in Analysis**
- **Error or Warning Messages**
- **Time (Seconds)**

Saturday, Mar 18, 1995 11:04:53 PM Page 1
<table>
<thead>
<tr>
<th>CUTOFF</th>
<th>TEST</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP. CASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.00</td>
<td>1.2001</td>
<td>0.3535</td>
<td>3.4177</td>
<td>0.0001</td>
<td>2.70</td>
<td>1.652</td>
<td>4.135</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
<td>-0.7282</td>
<td>0.1546</td>
<td>-4.7086</td>
<td>0.0000</td>
<td>0.52</td>
<td>0.323</td>
<td>0.804</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.00</td>
<td>ZERFA(3)</td>
<td>-0.6530</td>
<td>0.1847</td>
<td>-3.546</td>
<td>0.0004</td>
<td>0.52</td>
<td>0.323</td>
<td>0.804</td>
<td>BASELINE</td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.3730</td>
<td>0.3543</td>
<td>1.0582</td>
<td>0.0747</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1223.3743
LOG-LIKELIHOOD (CYCLE 7) = -1154.3686

-2*MAXIMIZED LOG-LIKELIHOOD = 3104.7531

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>295.5763</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>321.3315</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>42.5952</td>
<td>2</td>
<td>0.0000</td>
<td>ZERFA</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD)..... UNCONDITIONAL
TOLERANCE 0.00000000000
CONVERGENCE 0.00000000000
ITERATIONS 21
CONFIDENCE LEVEL 95%
RECORDS IN ANALYSIS 1895
ERROR OR WARNING MESSAGES ... none
TIME (SECONDS) 3.403
<table>
<thead>
<tr>
<th>OUTPOINT</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP.CATS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>CHANCE</td>
<td>0.5643</td>
<td>0.0820</td>
<td>6.9128</td>
<td>0.0000</td>
<td>1.7321</td>
<td>1.4568</td>
<td>2.064</td>
<td></td>
</tr>
<tr>
<td>SINGLE</td>
<td>INCHANC</td>
<td>-0.4886</td>
<td>0.0183</td>
<td>-25.976</td>
<td>0.0000</td>
<td>0.616</td>
<td>0.365</td>
<td>0.962</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>RELMAN2(2)</td>
<td>1.2977</td>
<td>0.3544</td>
<td>3.6093</td>
<td>0.0003</td>
<td>3.616</td>
<td>1.868</td>
<td>6.760</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>INSTRAC</td>
<td>-0.9026</td>
<td>0.3776</td>
<td>-2.3904</td>
<td>0.0081</td>
<td>0.406</td>
<td>0.247</td>
<td>0.672</td>
<td>BASELINE</td>
</tr>
<tr>
<td>12.00</td>
<td>INSTRAC</td>
<td>-0.6085</td>
<td>0.3557</td>
<td>-1.7030</td>
<td>0.0858</td>
<td>0.574</td>
<td>0.328</td>
<td>0.921</td>
<td>BASELINE</td>
</tr>
<tr>
<td>SINGLE</td>
<td>INSTRAC</td>
<td>-0.6721</td>
<td>0.0181</td>
<td>-3.7039</td>
<td>0.0001</td>
<td>0.520</td>
<td>0.438</td>
<td>0.614</td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.4664</td>
<td>0.1619</td>
<td>2.8652</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -2113.3743
LOG-LIKELIHOOD (CYCLE 5) = -2146.0916

-2*LOG-LIKELIHOOD = 2383.1831

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORES</td>
<td>309.3025</td>
<td>6</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>124.5655</td>
<td>6</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>14.2740</td>
<td>1</td>
<td>0.0001</td>
<td>INSTRAC</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD)........ UNCONDITIONAL
TOUPLANCE 0.00000200000
CONFERENCE 0.00000200000
REJUNATIONS 2%
CONFIDENCE LEVEL 95%
RECORDS IN ANALYSIS 1699
ERROR OR WARNING MESSAGES ... NONE
TIME (SECONDS) 3.000
Multiple Logistic Regression by Unconditional and Conditional Methods

Outcome

<table>
<thead>
<tr>
<th>Term</th>
<th>Coef.</th>
<th>S.E.</th>
<th>P-score</th>
<th>P-Value</th>
<th>O.R.</th>
<th>Lower</th>
<th>Upper</th>
<th>Exp. (O.R.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>3.1399</td>
<td>0.2573</td>
<td>4.3488</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log-Likelihood (Cycle 1) = -1313.3743
Log-Likelihood (Cycle 4) = -1160.8878

\(-2\times\text{Log-Likelihood} = 2291.7556\)

Test

<table>
<thead>
<tr>
<th>Statistic</th>
<th>D.F.</th>
<th>P-Value</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>318.1721</td>
<td>7</td>
<td>0.0000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>344.8739</td>
<td>7</td>
<td>0.0000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>18.4075</td>
<td>2</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics:

- **Analysis (Likelihood)**: Unconditional
- **Tolerance** = 0.920220290
- **Convergence** = 0.920220290
- **Iterations** = 3
- **Confidence Level** = 99%
- **Records in Analysis** = 1895
- **Error or Warning Messages** = None
- **Time (Seconds)** = 6.120
Output Table

<table>
<thead>
<tr>
<th>Term</th>
<th>CONF.</th>
<th>S.E.</th>
<th>L-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP.CATG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARITAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCOME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELPAIR1</td>
<td>0.3258</td>
<td>0.0925</td>
<td>3.6510</td>
<td>0.0090</td>
<td>1.407</td>
<td>1.407</td>
<td>3.023</td>
<td></td>
</tr>
<tr>
<td>RELPAIR2</td>
<td>-0.6499</td>
<td>0.0460</td>
<td>-12.7499</td>
<td>0.0000</td>
<td>0.215</td>
<td>0.215</td>
<td>0.416</td>
<td></td>
</tr>
<tr>
<td>RELPAIR3</td>
<td>-0.0463</td>
<td>0.1286</td>
<td>-0.3724</td>
<td>0.7081</td>
<td>0.960</td>
<td>0.960</td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td>RELPAIR4</td>
<td>-0.0596</td>
<td>0.1894</td>
<td>-0.3404</td>
<td>0.7347</td>
<td>0.927</td>
<td>0.927</td>
<td>0.583</td>
<td></td>
</tr>
<tr>
<td>RELPAIR5</td>
<td>-0.0137</td>
<td>0.0163</td>
<td>-0.9722</td>
<td>0.3311</td>
<td>0.993</td>
<td>0.993</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>RELPAIR6</td>
<td>-0.0042</td>
<td>0.0071</td>
<td>-0.5119</td>
<td>0.6044</td>
<td>0.996</td>
<td>0.996</td>
<td>0.959</td>
<td></td>
</tr>
<tr>
<td>RELPAIR7</td>
<td>0.3987</td>
<td>0.3738</td>
<td>1.6454</td>
<td>0.1995</td>
<td>1.478</td>
<td>0.730</td>
<td>3.075</td>
<td></td>
</tr>
<tr>
<td>RELPAIR8</td>
<td>1.3844</td>
<td>0.3813</td>
<td>3.6593</td>
<td>0.0003</td>
<td>4.037</td>
<td>1.812</td>
<td>8.513</td>
<td></td>
</tr>
<tr>
<td>RELPAIR9</td>
<td>1.3226</td>
<td>0.3184</td>
<td>4.3480</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log-Likelihood (Cycle 1) = -1333.3743

Log-Likelihood (Cycle 5) = -1333.0524

-3 * Maximized Log-Likelihood = 2386.1077

Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>D.F.</th>
<th>P-Value</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>BURE</td>
<td>336.8373</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>340.4410</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>35.4480</td>
<td>3</td>
<td>0.0004</td>
<td>RELPAIR</td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics

<table>
<thead>
<tr>
<th>Analysis (Likelihood)</th>
<th>Unconditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>0.0000010000</td>
</tr>
<tr>
<td>Convergence</td>
<td>0.0000100000</td>
</tr>
<tr>
<td>Iterations</td>
<td>25</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>99%</td>
</tr>
<tr>
<td>Records in Analysis</td>
<td>1865</td>
</tr>
<tr>
<td>Error or Warning Messages</td>
<td>none</td>
</tr>
<tr>
<td>Time (Seconds)</td>
<td>4.340</td>
</tr>
<tr>
<td>CATEGORY</td>
<td>OR</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>SINGLE CHI</td>
<td>0.8213</td>
</tr>
<tr>
<td>SINGLE CHIARC</td>
<td>0.3764</td>
</tr>
<tr>
<td>SINGLE RELPO(2)</td>
<td>0.9826</td>
</tr>
<tr>
<td>SINGLE INSTP1(2)</td>
<td>0.9051</td>
</tr>
<tr>
<td>SINGLE INSTP1(2)</td>
<td>0.3469</td>
</tr>
<tr>
<td>SINGLE INSTP1</td>
<td>0.075</td>
</tr>
<tr>
<td>SINGLE ZIPAI</td>
<td>0.0040</td>
</tr>
<tr>
<td>SINGLE ZIPAI(2)</td>
<td>0.2443</td>
</tr>
<tr>
<td>SINGLE ZIPAI(2)</td>
<td>0.3449</td>
</tr>
<tr>
<td>SINGLE KEMP(2)</td>
<td>0.243</td>
</tr>
<tr>
<td>SINGLE KEMP(2)</td>
<td>0.2643</td>
</tr>
<tr>
<td>SINGLE KEMP(2)</td>
<td>0.613</td>
</tr>
<tr>
<td>SINGLE LOCAL1(2)</td>
<td>0.605</td>
</tr>
<tr>
<td>SINGLE LOCAL1(2)</td>
<td>0.37</td>
</tr>
<tr>
<td>SINGLE LOCAL1</td>
<td>0.122</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.154</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1315.374
LOG-LIKELIHOOD (CYCLE 1) = -1123.574

-2*MAXLOG LOG-LIKELIHOOD = 2955.349

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.</td>
<td>33.4233</td>
<td>17</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>357.3393</td>
<td>17</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>4.756</td>
<td>8</td>
<td>0.5625</td>
<td>KEMP1 NEMP1 KEMP2 LOCAL1</td>
</tr>
</tbody>
</table>
NÍVEL SÓCIO ECONÔMICO

MULTEX - Release 07/83
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS
Ludwig Institute for Cancer Research - SP Branch
Epidemiology and Biostatistics Unit
Copyright (C) 1988 LICR/SP

TITLE : EXPOSICIONS

VARIÁVEIS PRESENT IN FILE

1 DIARRÉIA 2 ESTRANHO 3 ESTROFI 4 PROFES
5 TV 6 RAME 7 QIC 8 CEL
10 CLASSE 11 ORIGAOSA 12 FALTAS 13 QPC
15 CHIFA 16 CHIAVAR 17 LIMPAH 18 PREVER
20 MIGALHE 21 MIGALP 22 LANCHE 23 DIFERRO
25 RECREIO 26 ACORD 27 DISSERT 28 PERQUIZ
30 MIPÓC 31 MOSCAS 32 MOSQ 33 BARATAS 34 RATO

VARIABLES TO BE USED

OUTCOME DIARRÉIA

RESTRICTION

Variable RAME
Value 33.00
Oprecond C

RUN TIME CHARACTERISTICS

Program MULTEX (WITH SOCR SUPPORT)
Dataset C:\\LAB\\TUPOS\\TUPOS\\EXPOSICINS.TXT
Dictionary C:\\LAB\\TUPOS\\VER\\EXPOSIS.DIC
Date Saturday, May 18, 1993
Time 11:21:04.46
MULTILOG - MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS - Saturday, May 18, 1995 11:31:06 PM Page 1

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>X-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATRG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>2.00</td>
<td>TV(2)</td>
<td>0.2961</td>
<td>0.1095</td>
<td>2.6674</td>
<td>0.0072</td>
<td>2.245</td>
<td>1.004</td>
<td>1.664</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>CV(3)</td>
<td>-0.1817</td>
<td>0.1597</td>
<td>-1.1420</td>
<td>0.2539</td>
<td>0.861</td>
<td>0.431</td>
<td>0.912</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>GEN(3)</td>
<td>-0.7252</td>
<td>0.1542</td>
<td>-4.7119</td>
<td>0.0002</td>
<td>0.497</td>
<td>0.343</td>
<td>0.614</td>
<td>BASELINE</td>
</tr>
<tr>
<td>SIMPLE</td>
<td>N/C</td>
<td>0.0023</td>
<td>0.0009</td>
<td>2.4654</td>
<td>0.0149</td>
<td>1.002</td>
<td>1.602</td>
<td>2.004</td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.5332</td>
<td>0.2194</td>
<td>2.3926</td>
<td>0.0178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1315.3287
LOG-LIKELIHOOD (CYCLE 35) = -1313.6133

-2*LOG-LIKELIHOOD DIFFERENCE = 25.644

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>155.3839</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>143.3223</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD) UNCONDITIONAL
TOLERANCE 0.00000010000
CONFIDENCE 0.0000100000
ITERATIONS 20
CONFIDENCE LEVEL 5%
RECORDS IN ANALYSIS 3397
ERROR OR WARNING MESSAGES NO CONVERGENCE
TIME (SECONDS) 11.675
<table>
<thead>
<tr>
<th>CUTPOINT</th>
<th>TERM</th>
<th>COEF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.59</td>
<td>TV(2)</td>
<td>0.3961</td>
<td>0.1235</td>
<td>3.198</td>
<td>0.0016</td>
<td>1.062</td>
<td>0.979</td>
<td>1.070</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.56</td>
<td>COV(3)</td>
<td>-0.4085</td>
<td>0.1531</td>
<td>-2.643</td>
<td>0.0085</td>
<td>0.669</td>
<td>0.464</td>
<td>0.927</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.59</td>
<td>GLE(2)</td>
<td>-0.7256</td>
<td>0.3275</td>
<td>-2.367</td>
<td>0.0178</td>
<td>0.503</td>
<td>0.359</td>
<td>0.615</td>
<td>BASELINE</td>
</tr>
<tr>
<td>SIMPLE</td>
<td>N/C</td>
<td>0.0081</td>
<td>0.0049</td>
<td>2.6444</td>
<td>0.0080</td>
<td>1.009</td>
<td>1.001</td>
<td>1.004</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.59</td>
<td>PROP(1)</td>
<td>0.1164</td>
<td>0.0990</td>
<td>1.5555</td>
<td>0.1178</td>
<td>1.431</td>
<td>1.092</td>
<td>1.541</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.59</td>
<td>NASH(1)</td>
<td>-0.1332</td>
<td>0.1448</td>
<td>-0.7224</td>
<td>0.4708</td>
<td>0.862</td>
<td>0.562</td>
<td>1.193</td>
<td>BASELINE</td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.5108</td>
<td>0.2407</td>
<td>2.1313</td>
<td>0.0338</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-2 Ln Likelihood (Cycle 1) = -2335.3767
-2 Ln Likelihood (Cycle 6) = -2267.7628

-2 Ln Mx Likelihood = 2508.4084

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>357.1374</td>
<td>5</td>
<td>0.0000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>245.3979</td>
<td>6</td>
<td>0.0000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1.9220</td>
<td>2</td>
<td>0.6218</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

- Analysis (Likelihood) unconditional
- Tolerance 0.00000100000
- Convergence 0.192100000
- Iterations 25
- Confidence Level 95%
- Records in Analysis .. 19271
- Errors or Warnings Messages .. none
- Time (Seconds) 3.940
HÁBITOS HIGIÉNICOS

MULTILE - Release 07/89
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS
Ludwig Institute for Cancer Research - RP Branch
Epidemiology and biostatistics Unit
Copyright (C) 1988 LIRC/RP

TITLE : EXPOSICLES

VARIABLES PRESENT IN FILE

1 DIARRHEA 2 HISTMAN 3 INSTHAI 4 PROPH
5 TV 6 BANH 7 COL 8 SEL 9 N/C
10 CLOTH 11 ORIGACTA 12 PASTACTA 13 CPC 14 CPC/18
15 CAIZA 16 CALLAZAT 17 LIMOCAL 18 PEPRES 19 PEPALIN
20 HIGALIN 21 HIGERT 22 LANCYW 23 DISPERG 24 EPOCAM
25 MRTECN 26 ACOND 27 DISPLID 28 PRERLID 29 INMED
30 REPLOC 31 MOREAS 32 MORQ 33 BARATAS 34 RAYON

VARIABLES TO BE USED

OUTCOME DIARRHEA

RESTRICTION

Variable HIGALIN
Value95.00
Operand =

RUNTIME CHARACTERISTICS

Program MULTILE (WITH 002ST SUPPORT)
Dataset C:\ARCHIVOS\ARCHIVOS\EXPOSILES.TXT
Dictionary C:\ARCHIVOS\ARCHIVOS\EXPOSILE.DIC
Date Saturday, May 18, 1995
Time 21:41:50.23
Logistic Regression Output

<table>
<thead>
<tr>
<th>CUTOFF</th>
<th>TERM</th>
<th>COEF.</th>
<th>S.E.</th>
<th>X-VALUE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>PREPARE(1)</td>
<td>0.0444</td>
<td>0.4464</td>
<td>0.1110</td>
<td>0.0031</td>
<td>3.031</td>
<td>1.070</td>
<td>5.076</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>PREPARE(1)</td>
<td>-0.5432</td>
<td>0.4464</td>
<td>-1.2212</td>
<td>0.2246</td>
<td>0.582</td>
<td>0.225</td>
<td>1.309</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>HIGHREP(1)</td>
<td>0.0233</td>
<td>0.1234</td>
<td>-0.2166</td>
<td>0.8298</td>
<td>0.972</td>
<td>0.759</td>
<td>1.229</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.00</td>
<td>HIGHREP(1)</td>
<td>0.0932</td>
<td>0.1815</td>
<td>0.0078</td>
<td>0.0023</td>
<td>1.748</td>
<td>1.222</td>
<td>2.659</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>HIGHREP(1)</td>
<td>1.3136</td>
<td>0.1815</td>
<td>5.1598</td>
<td>0.0000</td>
<td>3.054</td>
<td>2.137</td>
<td>4.348</td>
<td>BASELINE</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>-1.1756</td>
<td>0.3932</td>
<td>-2.9476</td>
<td>0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log-Likelihood (Cycle 1) = -1053.2847
Log-Likelihood (Cycle 1) = -1053.2847

-3 * Log-Likelihood - 2962.3237

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>80.4444</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>84.3469</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics:

- Analysis (Likelihood): Unconditional
- Tolerance: 0.0000618260
- Convergence: 0.0400108900
- Iterations: 3
- Confidence Level: 95%
- Records in Analysis: 2533
- Error in Warning Messages: None
- Time (Seconds): 2.430
<table>
<thead>
<tr>
<th>CUTPOINT</th>
<th>TERM</th>
<th>COMFP.</th>
<th>S.R.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP. CATGR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>PREDALIN(3)</td>
<td>2.0112</td>
<td>0.4154</td>
<td>2.4245</td>
<td>0.0169</td>
<td>2.749</td>
<td>1.219</td>
<td>6.206</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>PREDALIN(3)</td>
<td>-0.3465</td>
<td>0.1024</td>
<td>-0.7249</td>
<td>0.4688</td>
<td>0.893</td>
<td>0.258</td>
<td>2.859</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>HIGDALIN(2)</td>
<td>-0.3322</td>
<td>0.2017</td>
<td>-0.4054</td>
<td>0.6823</td>
<td>0.880</td>
<td>0.573</td>
<td>3.282</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>HIGDALIN(3)</td>
<td>0.4305</td>
<td>0.3300</td>
<td>1.3079</td>
<td>0.0916</td>
<td>1.343</td>
<td>0.930</td>
<td>2.163</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>HIGDALIN(4)</td>
<td>0.8274</td>
<td>0.2201</td>
<td>3.7540</td>
<td>0.0003</td>
<td>2.007</td>
<td>1.457</td>
<td>2.891</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>PREDALIN(2)</td>
<td>-0.0654</td>
<td>0.1157</td>
<td>-0.1461</td>
<td>0.8818</td>
<td>0.956</td>
<td>0.510</td>
<td>1.797</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.50</td>
<td>PREDALIN(3)</td>
<td>-0.2355</td>
<td>0.1930</td>
<td>-1.2228</td>
<td>0.2215</td>
<td>0.790</td>
<td>0.561</td>
<td>1.525</td>
<td>BASELINE</td>
</tr>
<tr>
<td>7.50</td>
<td>HIGDALIN(2)</td>
<td>0.1357</td>
<td>0.1874</td>
<td>0.7020</td>
<td>0.4827</td>
<td>1.349</td>
<td>0.780</td>
<td>2.332</td>
<td>BASELINE</td>
</tr>
<tr>
<td>8.50</td>
<td>HIGDALIN(3)</td>
<td>0.2399</td>
<td>0.3289</td>
<td>0.7473</td>
<td>0.5706</td>
<td>1.335</td>
<td>0.726</td>
<td>1.788</td>
<td>BASELINE</td>
</tr>
<tr>
<td>9.50</td>
<td>HIGDALIN(4)</td>
<td>0.6789</td>
<td>0.2456</td>
<td>2.7469</td>
<td>0.0740</td>
<td>1.601</td>
<td>0.935</td>
<td>2.435</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

CONSTANT -2.1427 0.4140 -2.0099 0.0001

LOG-LIKELIHOOD (CYCLE 1) = -1053.2847
LOG-LIKELIHOOD (CYCLE 21) = -1008.3139

-2*LOG-LIKELIHOOD = 2016.6377

<table>
<thead>
<tr>
<th>TERM</th>
<th>STATISTIC</th>
<th>P.F.</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINKE</td>
<td>85.7152</td>
<td>10</td>
<td>0.0000</td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>88.9417</td>
<td>10</td>
<td>0.0000</td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>5.1856</td>
<td>5</td>
<td>0.1474</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

<table>
<thead>
<tr>
<th>ANALYSIS (LIKELIHOOD)</th>
<th>UNCONDITIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIADEMICITY</td>
<td>0.69010105000</td>
</tr>
<tr>
<td>CONVERGENCE</td>
<td>0.6901900000</td>
</tr>
<tr>
<td>ITERATIONS</td>
<td>28</td>
</tr>
<tr>
<td>CONFIDENCE LEVEL</td>
<td>95%</td>
</tr>
<tr>
<td>RECORDS IN ANALYSIS</td>
<td>1515</td>
</tr>
<tr>
<td>ERRORS OR WARNING MESSAGES</td>
<td>NO CONVERGENCE</td>
</tr>
<tr>
<td>VTIME (SECONDS)</td>
<td>31.330</td>
</tr>
</tbody>
</table>
ABASTECIMENTO DE ÁGUA

MULTILE - Release 07/90
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS
Ludwig Institute for Cancer Research - SP Branch
Epidemiology and Bioestatistics Unit
Copyright (C) 1988 LICR/SP

TITLE : EXPOSICIES

VARIABLES PRESENT IN FILE

<table>
<thead>
<tr>
<th>1</th>
<th>DIARRREA</th>
<th>2</th>
<th>ENTRAM</th>
<th>3</th>
<th>DUFFAL</th>
<th>4</th>
<th>PROPRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>TV</td>
<td>6</td>
<td>RANK</td>
<td>7</td>
<td>COS</td>
<td>8</td>
<td>GEEL</td>
</tr>
<tr>
<td>10</td>
<td>CLASEN</td>
<td>11</td>
<td>ORIGAUA</td>
<td>12</td>
<td>PALTGRA</td>
<td>13</td>
<td>QPC</td>
</tr>
<tr>
<td>15</td>
<td>CASEA</td>
<td>16</td>
<td>CAZAHAT</td>
<td>17</td>
<td>LIMPOCAIX</td>
<td>18</td>
<td>PREPRER</td>
</tr>
<tr>
<td>20</td>
<td>NISALIM</td>
<td>21</td>
<td>NISUDY</td>
<td>22</td>
<td>LAMNCE</td>
<td>23</td>
<td>DISPREGO</td>
</tr>
<tr>
<td>28</td>
<td>KISICUA</td>
<td>29</td>
<td>ACONOD</td>
<td>30</td>
<td>DIPLISIO</td>
<td>31</td>
<td>TIPELIZED</td>
</tr>
<tr>
<td>30</td>
<td>ENPFCOC</td>
<td>31</td>
<td>MOCES</td>
<td>32</td>
<td>MOSQ</td>
<td>33</td>
<td>RAINLES</td>
</tr>
</tbody>
</table>

VARIABLES TO BE USED

OUTCOME DIARREA

RESTRICTION

Variable PALTGRA
Value 19.00
Operator <

SOFTWARE CHARACTERISTICS

Program MULTILE (with 80187 SUPPRESS)
Dataset C:\ARQUIVOS\RESPSON\EXPOSIC.TXT
Dictionary C:\ARQUIVOS\RESPSON\EXPOSIC.DIC
Date Saturday, Mar 18, 1995
Time 11:49:09.35
<table>
<thead>
<tr>
<th>CUTPOINT</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>EXP.CVFED.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>LIMICASE(2)</td>
<td>0.5063</td>
<td>0.2751</td>
<td>1.8748</td>
<td>0.0608</td>
<td>2.682</td>
<td>0.977</td>
<td>3.816</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>LIMICASE(1)</td>
<td>-0.9223</td>
<td>0.1128</td>
<td>-8.1973</td>
<td>2.9491</td>
<td>0.970</td>
<td>0.718</td>
<td>1.210</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>LIMICASE(4)</td>
<td>0.3046</td>
<td>0.1673</td>
<td>1.8026</td>
<td>0.0715</td>
<td>3.356</td>
<td>0.600</td>
<td>3.758</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>LIMICASE(5)</td>
<td>1.3799</td>
<td>0.2462</td>
<td>5.6051</td>
<td>0.0099</td>
<td>3.973</td>
<td>2.451</td>
<td>6.457</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>LIMICASE(6)</td>
<td>1.3243</td>
<td>0.3343</td>
<td>0.3725</td>
<td>0.0009</td>
<td>1.074</td>
<td>2.366</td>
<td>4.005</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>CONSTANT</td>
<td>-6.3460</td>
<td>0.6731</td>
<td>3.1976</td>
<td>0.0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1308.6585
LOG-LIKELIHOOD (CYCLE 1) = -1240.6492

-2 * MAXIMUM LOG-LIKELIHOOD = 2482.1164

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>113.8542</td>
<td>5</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>116.1746</td>
<td>5</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>UNCONDITIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis (Likelihood)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance</td>
<td>0.0000010000</td>
<td></td>
</tr>
<tr>
<td>Convergence</td>
<td>0.0000100000</td>
<td></td>
</tr>
<tr>
<td>Iterations</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Confidence Level</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Records in Analysis</td>
<td>1875</td>
<td></td>
</tr>
<tr>
<td>Errors or Warning Lines</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Time (Seconds)</td>
<td>2.690</td>
<td></td>
</tr>
</tbody>
</table>
MULTILOG - MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

<table>
<thead>
<tr>
<th>CYCLE</th>
<th>ENTER</th>
<th>PREDICTOR</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATOG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>TRUE</td>
<td>LIMPHCKS(3)</td>
<td>0.5973</td>
<td>0.2716</td>
<td>2.2366</td>
<td>0.0257</td>
<td>2.751</td>
<td>2.325</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>TRUE</td>
<td>LIMPHCKS(3)</td>
<td>-0.0045</td>
<td>0.1124</td>
<td>-0.0402</td>
<td>0.9959</td>
<td>0.595</td>
<td>0.797</td>
<td>1.241</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.00</td>
<td>TRUE</td>
<td>LIMPHCKS(4)</td>
<td>0.1224</td>
<td>0.1674</td>
<td>0.0803</td>
<td>0.9234</td>
<td>2.153</td>
<td>0.673</td>
<td>2.211</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>TRUE</td>
<td>LIMPHCKS(5)</td>
<td>0.1076</td>
<td>0.2477</td>
<td>0.2101</td>
<td>0.8315</td>
<td>3.661</td>
<td>3.264</td>
<td>3.797</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>TRUE</td>
<td>LIMPHCKS(6)</td>
<td>0.1084</td>
<td>0.3347</td>
<td>0.3145</td>
<td>0.7385</td>
<td>5.236</td>
<td>2.350</td>
<td>1.984</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>TRUE</td>
<td>MALAGA(3)</td>
<td>0.0273</td>
<td>0.0393</td>
<td>0.3001</td>
<td>0.7611</td>
<td>1.153</td>
<td>0.805</td>
<td>1.640</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.00</td>
<td>TRUE</td>
<td>MALAGA(3)</td>
<td>0.0273</td>
<td>0.0393</td>
<td>0.3001</td>
<td>0.7611</td>
<td>1.153</td>
<td>0.805</td>
<td>1.640</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

CONSTANT: -0.1751 0.0895 -3.0768 0.0021

LOG-LIKELIHOOD (CYCLE 3) = -1294.6555
LOG-LIKELIHOOD (CYCLE 3) = -1294.6555

-2*MAINTAINED LOG-LIKELIHOOD = 2475.2118

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>257.6241</td>
<td>7</td>
<td>0.0000</td>
<td>MALAGA</td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>222.3423</td>
<td>7</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>233.6228</td>
<td>2</td>
<td>0.0029 MALAGA</td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD) UNCONDITIONAL
TOLERANCE 0.6000000000
CONVERGENCE 0.6000000000
ITERATIONS 35
CONFIDENCE LEVEL 95%
RECORDS IN ANALYSIS 1373
ERROR ON WARNING MESSAGES .. NONE
TIME (SECONDS) 5.000
ESGOTAMENTO SANITÁRIO

MULTILE - Release 07/89

MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

Ludwig Institute for Cancer Research - IE Branch

Epidemiology and Biostatistics Unit

Copyright (C) 1986 LICM/IE

TITLE : EXPOSURES

VARIABLES PRESENT IN FILE

<table>
<thead>
<tr>
<th>1 DIARRHÉA</th>
<th>2 ESTRELA</th>
<th>4 PREG</th>
<th>5 TV</th>
<th>6 RASS</th>
<th>7 CID</th>
<th>8 GEL</th>
<th>9 E/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CLASSEN</td>
<td>11 MARAFON</td>
<td>12 MAFAFON</td>
<td>13 QPC</td>
<td>14 QPC/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 CAITRA</td>
<td>14 CALJAT</td>
<td>17 LEPAS</td>
<td>16 PREPAK</td>
<td>19 PREPAK/M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 EBAULM</td>
<td>21 EBGHE</td>
<td>22 LECIPE</td>
<td>23 DIPPE</td>
<td>24 EOCAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 EKIPYON</td>
<td>24 ACOWD</td>
<td>27 KIPILIO</td>
<td>28 PRELIED</td>
<td>29 INDRO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 EMOPC</td>
<td>31 MOSCAS</td>
<td>32 MONQ</td>
<td>33 BASTAS</td>
<td>34 RAPOS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VARIABLES TO BE USED

| OUTCOME | DIARRHÉA |

RESTRICTION

Variable	EXISTION
Values	99.00
Operator	=

SUBJECT CHARACTERISTICS

Program MULTILE (WITH 80387 SUPPORT)

Dataset C:\ARQUIVOS\BRASIL\EXPOSIC.TXT

Dictionary C:\ARQUIVOS\WEB\EXPOSIC.DIC

Date Saturday, Mar 16, 1995

Time 21:55:51.79
<table>
<thead>
<tr>
<th>CUTOFF</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>X-SCORE</th>
<th>P-VALUE</th>
<th>D.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP.CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>DINEQ2</td>
<td>0.5442</td>
<td>0.0931</td>
<td>5.6909</td>
<td>0.0000</td>
<td>1.756</td>
<td>2.448</td>
<td>2.125</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>DINEQ4</td>
<td>1.0461</td>
<td>0.5461</td>
<td>6.3612</td>
<td>0.0000</td>
<td>2.039</td>
<td>2.043</td>
<td>3.920</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>DINEQ6</td>
<td>1.5475</td>
<td>0.5655</td>
<td>6.4106</td>
<td>0.0000</td>
<td>4.190</td>
<td>2.378</td>
<td>3.896</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>CONSTANT</td>
<td>-0.3844</td>
<td>0.0723</td>
<td>5.3034</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1375.2462
LOG-LIKELIHOOD (CYCLE 4) = -1351.2178

-2*MAXIMIZED LOG-LIKELIHOOD= 2882.4397

<table>
<thead>
<tr>
<th>STATISTIC</th>
<th>D.P</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>66.8133</td>
<td>3</td>
<td>0.0000</td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>66.8166</td>
<td>3</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

- ANALYSIS (LIKELIHOOD)....... UNCONDITIONAL
- TOLERANCE 0.00000100000
- CONVERGENCE 0.0000100000
- ITERATIONS 25
- CONFIDENCE LEVELS 95%
- RECORDS IN ANALYSIS 1912
- ERROR ON WARNING MESSAGES ... None
- TIME (SECONDS) 1.590
Multiple Logistic Regression by Unconditional and Conditional Methods

<table>
<thead>
<tr>
<th>CUTPOINT</th>
<th>TREE</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>DISREG(2)</td>
<td>0.0996</td>
<td>0.1135</td>
<td>0.7883</td>
<td>0.4317</td>
<td>2.035</td>
<td>0.673</td>
<td>3.373</td>
<td>Baseline</td>
</tr>
<tr>
<td>2.60</td>
<td>DISREG(1)</td>
<td>0.7318</td>
<td>0.1934</td>
<td>4.1038</td>
<td>0.0000</td>
<td>2.618</td>
<td>1.462</td>
<td>4.662</td>
<td>Baseline</td>
</tr>
<tr>
<td>3.50</td>
<td>DISREG(6)</td>
<td>3.1189</td>
<td>0.2595</td>
<td>2.9483</td>
<td>0.0032</td>
<td>3.043</td>
<td>3.455</td>
<td>6.242</td>
<td>Baseline</td>
</tr>
<tr>
<td>1.50</td>
<td>REGOM(3)</td>
<td>-0.3901</td>
<td>0.1110</td>
<td>-3.4514</td>
<td>0.0006</td>
<td>0.391</td>
<td>0.185</td>
<td>0.695</td>
<td>Baseline</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>0.4814</td>
<td>0.1513</td>
<td>3.2154</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log-Likelihood (Cycle 1) = -1255.2462
Log-Likelihood (Cycle 35) = -1254.4559

-2 * Maximum Log-Likelihood = 2510.4924

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVR</td>
<td>138.0370</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>141.3420</td>
<td>6</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>73.6232</td>
<td>2</td>
<td>0.0000</td>
<td>REGOM</td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics:

- Analysis (Likelihood): Unconditional
- Tolerance: 0.9999999999
- Convergence: 0.0000000000
- Iterations: 23
- Confidence Level: 95%
- Records of Analysis: 1913
- Error on Warning Messages: No convergence
- Time (Seconds): 11.700

Multivariate Logistic Regression by Unconditional and Conditional Methods

<table>
<thead>
<tr>
<th>CATEG</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.A.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP.CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>DISPAN(3)</td>
<td>0.1918</td>
<td>0.1358</td>
<td>0.4468</td>
<td>0.6566</td>
<td>1.50</td>
<td>0.383</td>
<td>1.191</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>DISPAN(3)</td>
<td>0.2479</td>
<td>0.1816</td>
<td>0.4829</td>
<td>0.0000</td>
<td>2.50</td>
<td>0.383</td>
<td>1.191</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>DISPAN(4)</td>
<td>1.3255</td>
<td>0.3618</td>
<td>3.6408</td>
<td>0.0000</td>
<td>3.50</td>
<td>0.383</td>
<td>1.191</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>ESCODAN(3)</td>
<td>-0.3959</td>
<td>0.5133</td>
<td>-0.7795</td>
<td>0.0000</td>
<td>4.50</td>
<td>0.383</td>
<td>1.191</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>RESISTOR(3)</td>
<td>0.3570</td>
<td>0.3378</td>
<td>0.8805</td>
<td>0.0016</td>
<td>5.50</td>
<td>0.383</td>
<td>1.191</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

Constant: 0.3451

LOG-LIKELIHOOD (Cycle 3) = -1225.2462
LOG-LIKELIHOOD (Cycle 4) = -1225.2463

-2MAXIMUM LOG-LIKELIHOOD = 2550.7926

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>1.431844</td>
<td>1</td>
<td>0.0000</td>
<td>SCORE</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>144.7643</td>
<td>5</td>
<td>0.0000</td>
<td>Likelihood Ratio</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>8.7887</td>
<td>3</td>
<td>0.0043</td>
<td>RESISTOR</td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics:

- Analysis (Likelihood): UNCONDITIONAL
- Tolerance
- Confidence
- Iterations: 23
- Confidence Level: 95%
- Records in Analysis: 1922
- Error on Warning Messages: NONE
- Time (Seconds): 4.130

Saturday, May 18, 1995 11:56:33 PM Page 3
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

Ledwig Institute for Cancer Research - SP Branch,
Epidemiology and Biostatistics Unit
Copyright (C) 1986 LIMC/SP

TITLE : EXPOSURES

VARIABLES PRESENT IN FILE

--
 1 DIARRHEA 2 INSTABL 3 INFANT 4 PROXP
 5 TV 6 BATH 7 COX 8 CIEL 9 M/C
 10 CLASH 11 COICUIDA 12 PALMOSIA 13 GPC 14 GPC/10
 15 CAIXA 16 CAIXAAT 17 LEM/MAL 18 PERPRER 19 PREFAIX
 20 MIDALIN 21 INGREF 22 LACREPE 23 DISPERO 24 RIGUAM
 25 BREITCOR 26 ACORRO 27 DISPLFED 28 PRIQUXO 29 IRNIRD
 30 ENPOC 31 MORCAS 32 MORQ 33 BARATAS 34 RATOS

VARIABLES TO BE USED

OUTCOME DIARRHEA

RESTRICTION

Variable ACCEPT
Values $1.00
Operator <

RUNTIME CHARACTERISTICS

Program MULTIPLE (WITH 20187 SUPPORT)
Dataset C:\ARQUIVOS\EDADOS\EXPOSIC\TXT
Dictionary C:\ARQUIVOS\TRAB\EXPOSIC.DIC
Date Saturday, Mar 14, 1998
Time 12:03:03.45
Multiple Logistic Regression

Cutpoint	**Term**	**Coeff.**	**S.E.**	**Z-Score**	**P-Value**	**O.R.**	**Lower**	**Upper**	**Ref. Category**
1.50 | FAU | 0.4388 | 0.1362 | 3.2076 | 0.0012 | 1.547 | 1.259 | 1.892 | Baseline
2.50 | FAU | 0.8539 | 0.3113 | 2.7253 | 0.0065 | 2.365 | 1.935 | 2.922 | Baseline
Constant | -0.3841 | 0.0502 | -7.6826 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Log-Likelihood (Cycle 1): -1340.462

Log-Likelihood (Cycle 26): -1328.144

-2 * Maximized Log-Likelihood: 2697.928

Test Table

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>D.F.</th>
<th>P-Value</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>63.172</td>
<td>2</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>64.262</td>
<td>2</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Criteria and Model Building Characteristics:

- Analysis (Likelihood): Unconditional
- Tolerance: 0.0000010000
- Convergence: 0.0000010000
- Iterations: 25
- Confidence Level: 95%
- Records in Analysis: 1843
- Error or Warning Messages: No Convergence
- Time (Seconds): 8.750
MULTIL - MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

- **Saturday, Mar 12, 1992 12:03:23.05 Page 2**

<table>
<thead>
<tr>
<th>CUTPOINT</th>
<th>TERM</th>
<th>ODDS</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>FERGOLD2</td>
<td>0.6099</td>
<td>0.1125</td>
<td>5.3797</td>
<td>0.0000</td>
<td>1.597</td>
<td>1.179</td>
<td>2.125</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>FERGOLD3</td>
<td>0.5137</td>
<td>0.1300</td>
<td>3.9999</td>
<td>0.0000</td>
<td>2.449</td>
<td>1.975</td>
<td>3.048</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>ACOMG2</td>
<td>0.7824</td>
<td>0.1558</td>
<td>5.0798</td>
<td>0.0000</td>
<td>2.187</td>
<td>1.798</td>
<td>2.659</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>ACOMG3</td>
<td>0.9990</td>
<td>0.2182</td>
<td>5.6004</td>
<td>0.0000</td>
<td>3.069</td>
<td>2.122</td>
<td>4.612</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>CONSTANT</td>
<td>-0.7384</td>
<td>0.0876</td>
<td>-8.4334</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

LOG-likelihood (cycle 2) = -1360.6456
LOG-likelihood (cycle 7) = -1273.7448
-2*MAXIMIZED LOG-LIKELIHOOD = 2547.4906

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>166.7681</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>172.8017</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>129.5197</td>
<td>2</td>
<td>0.0000</td>
<td>ACOMG3</td>
</tr>
</tbody>
</table>

Criteria and model-building characteristics:

- **Analysis (likelihood)**
 - Unconditional
 - Tolerance: 0.0008010000
 - Convergence: 0.0000200000
 - Iterations: 25
 - Confidence level: 95%
 - Records in analysis: 1963
 - Error or warning messages: None
 - Time (seconds): 3.356
<table>
<thead>
<tr>
<th>CUTOFF</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATRG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
<td>FREQUENC</td>
<td>0.4445</td>
<td>.2270</td>
<td>1.9603</td>
<td>.001</td>
<td>3.214</td>
<td>2.001</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>FREQUENC</td>
<td>.9327</td>
<td>.3365</td>
<td>4.5147</td>
<td>.00006</td>
<td>2.297</td>
<td>1.966</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>AC ()</td>
<td>.7102</td>
<td>.2077</td>
<td>3.4122</td>
<td>.00006</td>
<td>2.094</td>
<td>2.655</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>AC ()</td>
<td>-.0226</td>
<td>.1656</td>
<td>-.1357</td>
<td>.0021</td>
<td>4.052</td>
<td>2.214</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>AC ()</td>
<td>.0311</td>
<td>.1095</td>
<td>2.8179</td>
<td>.00053</td>
<td>1.519</td>
<td>1.298</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>AC ()</td>
<td>.0826</td>
<td>.1016</td>
<td>7.6199</td>
<td>.00001</td>
<td>2.461</td>
<td>0.906</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>LANCHE</td>
<td>.1651</td>
<td>.3292</td>
<td>2.9763</td>
<td>.0028</td>
<td>1.353</td>
<td>1.456</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>LANCHE</td>
<td>.3301</td>
<td>.1920</td>
<td>1.7051</td>
<td>.0009</td>
<td>3.680</td>
<td>3.536</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>LANCHE</td>
<td>.3301</td>
<td>.1920</td>
<td>1.7051</td>
<td>.0009</td>
<td>3.680</td>
<td>3.536</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>LANCHE</td>
<td>.3301</td>
<td>.1920</td>
<td>1.7051</td>
<td>.0009</td>
<td>3.680</td>
<td>3.536</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>LANCHE</td>
<td>.3301</td>
<td>.1920</td>
<td>1.7051</td>
<td>.0009</td>
<td>3.680</td>
<td>3.536</td>
<td>BASELINE</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>LANCHE</td>
<td>.3301</td>
<td>.1920</td>
<td>1.7051</td>
<td>.0009</td>
<td>3.680</td>
<td>3.536</td>
<td>BASELINE</td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = 1350.4656
LOG-LIKELIHOOD (CYCLE 6) = 1339.1648

-2*MAXIMIZED LOG-LIKELIHOOD= 2479.7314

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD)...... UNCONDITIONAL
TOLERANCE 0.0000000000
CONVERGENCE 0.0000000000
ITERATIONS 5%
CONFIDENCE LEVEL 95%
END OF DATA DEPENDENCY ... 1943
ERROR OF WARNING MESSAGES ... NONE
TIME (SECONDS) 5.870
ÁGUA DE CHUVA

MULTILE - Release 07/93
MULTILE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS
Ludwig Institute for Cancer Research - EP Branch
Epidemiology and Biostatistics Unit
Copyright (C) 1988 LICH/EP

TITLE : EXPOSICOS

VARIABLES PRESENT IN FILE

2 DIARRHEA 3 INTMAM 3 INTMPAL 4 PRUFR
5 TV 6 BAKE 7 OXI 8 OEL 9 M/C
10 CLASER 11 ORIAGUA 12 PALTRAGA 13 QPC 14 QPC/10
15 CAFAZ 16 CAZARAT 17 LINFOLAR 18 PREPAR 19 REPELLEN
20 KIGILIN 21 KIGUSP 22 LAMPEZ 23 DISPERO 24 ESCUAS
25 ESUSTOM 26 AGUCA 27 DISPERO 28 FREQILE 29 INHID
30 EMFOC 31 MOSCA 32 MOSQ 33 BARATAS 34 RATO

VARIABLES TO BE USED

OUTCOME DIARRHEA

RESTRICTION

Variable EMFOC
Values 99.00
Operator <

RUNTIME CHARACTERISTICS

Program MULTILE (WITH 60387 SUPPORT)
Dataset C:\\AGUACDS\\BAJOS\\EXPOSICOS.TXT
Dictionary C:\\AGUACDS\\TEST\\EXPOSICOS.DIC
Date Saturday, Mar 18, 1995
Time 12:08:31.41
MULSIS - MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>T-TEST</th>
<th>CRIT.</th>
<th>S.E.</th>
<th>T-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATNO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.4874</td>
<td>0.0974</td>
<td>6.21211</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td>BASELINE</td>
</tr>
<tr>
<td>SEX(H)</td>
<td>-0.7410</td>
<td>0.0958</td>
<td>-7.7173</td>
<td>0.0000</td>
<td>0.477</td>
<td>0.285</td>
<td>0.976</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -3276.5893
LOG-LIKELIHOOD (CYCLE 2) = -1346.6584

-2*MAXIMIZED LOG-LIKELIHOOD = 3492.9128

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>60.7450</td>
<td>1</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>61.0454</td>
<td>1</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD) UNCONDITIONAL
TOLERANCE 0.00000100000
CONVERGENCE 0.00000100000
ITERATIONS 25
CONFIDENCE LEVEL 95%
RECORDS IN ANALYSIS 1984
ERRORS OR WARNING MESSAGES NONE
TIME (SECONDS) 1.160
MULTA - MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS - Saturday, Mar 18, 1995 12:08:55.79 Page 3

<table>
<thead>
<tr>
<th>CUTPOINT</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>R-SQUARE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>IFUND</td>
<td>-0.6988</td>
<td>0.0991</td>
<td>0.0216</td>
<td>0.0000</td>
<td>0.457</td>
<td>0.249</td>
<td>0.696</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>EPOC</td>
<td>-0.3777</td>
<td>0.1049</td>
<td>-1.3323</td>
<td>0.1038</td>
<td>0.838</td>
<td>0.477</td>
<td>1.037</td>
<td>BASELINE</td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.3144</td>
<td>0.2011</td>
<td>0.7925</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1376.3893
LOG-LIKELIHOOD (CYCLE 25) = -1364.4331

-2*MAXIMIZED LOG-LIKELIHOOD = 2698.7887

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>63.2074</td>
<td>2</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>63.3133</td>
<td>2</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>3.4461</td>
<td>1</td>
<td>0.1038</td>
<td>EPOC</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD):...... UNCONDITIONAL
VOLKMANCE 0.000000000000
CONVERGENCE 0.000000000000
ITERATIONS 26
CONFIDENCE LEVEL 95%
RECORDS IN ANALYSIS 1984
ERROR OR WARNING MESSAGES .. NO CONVERGENCE
TIME (SECONDS) 6.520
VETORES

MULTLE - Release 07/89

MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

Ludwig Institute for Cancer Research - SP Branch

Epidemiology and Biostatistics Unit

Copyright (C) 1988 LICR/SP

VARIABLES PRESENT IN FILE

<table>
<thead>
<tr>
<th>1 DIARRHEA</th>
<th>2 EMPHYSEMA</th>
<th>3 EMPHYSEMA</th>
<th>4 EMPHYSEMA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5 TT</th>
<th>6 BAKH</th>
<th>7 OBE</th>
<th>8 GEL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15 CLAES</th>
<th>16 CLAES</th>
<th>17 CLAES</th>
<th>18 CLAES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19 CABI</th>
<th>20 CABI</th>
<th>21 CABI</th>
<th>22 CABI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>23 OMCASH</th>
<th>24 OMCASH</th>
<th>25 OMCASH</th>
<th>26 OMCASH</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>27 OMCASH</th>
<th>28 OMCASH</th>
<th>29 OMCASH</th>
<th>30 OMCASH</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>31 OMCASH</th>
<th>32 OMCASH</th>
<th>33 OMCASH</th>
<th>34 OMCASH</th>
</tr>
</thead>
</table>

VARIABLES TO BE USED

<table>
<thead>
<tr>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIARRHEA</td>
</tr>
</tbody>
</table>

RESTRICTION

Variable

| MONO |

Value

| 99.00 |

Operator

| < |

RUNTIME CHARACTERISTICS

Program

MULTLE (WITH 80387 SUPPORT)

Dataset

C:\LABORTIVOS\RDADOS\EXPOSCI.TXT

Dictionary

C:\LABORTIVOS\TEST\EXPOSI.DIC

Date

Saturday, Mar 18, 1989

Time

23:16:03.47
Multiple Logistic Regression by Unconditional and Conditional Methods

<table>
<thead>
<tr>
<th>CUTOFF</th>
<th>TERM</th>
<th>ODDS RATIO</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>MOSAIC(2)</td>
<td>0.4552</td>
<td>0.1032</td>
<td>-4.7817</td>
<td>0.0000</td>
<td>0.615</td>
<td>0.424</td>
<td>0.753</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>RASOR(2)</td>
<td>0.3995</td>
<td>0.0948</td>
<td>-4.6053</td>
<td>0.0000</td>
<td>0.675</td>
<td>0.557</td>
<td>0.813</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>BARATAS(2)</td>
<td>0.3400</td>
<td>0.0966</td>
<td>-3.5476</td>
<td>0.0004</td>
<td>0.712</td>
<td>0.587</td>
<td>0.864</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>MOSQ(2)</td>
<td>0.3360</td>
<td>0.0957</td>
<td>-3.3273</td>
<td>0.0009</td>
<td>0.721</td>
<td>0.578</td>
<td>0.865</td>
<td>BASELINE</td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>0.6094</td>
<td>0.0910</td>
<td>7.5219</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log-Likelihood (Cycle 1) = -1345.5182
Log-Likelihood (Cycle 8) = -1295.5195

-2 * Maximised Log-Likelihood = 2591.0388

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>33.5562</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>15.1375</td>
<td>4</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics:

- Analysis (Likelihood): Unconditional
- Tolerance: 0.0000
- Convergence: 0.0000
- Iterations: 15
- Confidence Level: 95%
- Records in Analysis: 1918
- Error GS Warning Messages: None
- Time (Seconds): 2.610
MODEL FINAL

MULTLE - Release 07/89
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS
Ludwig Institute for Cancer Research - NY Branch
Epidemiology and Biostatistics Unit
Copyright (C) 1988 LICR/NYP

TITLE : MODELO FINAL 1

VARIABLES PRESENT IN FILE

2 DIARRHEA 3 CEAANC 4 ICDIANC 5 IMMUN
5 IMMUN 6 TVHAN 7 KELMAN 9 SHEL
10 CAS 11 QEL 12 M/C 13 PAPFAL 14 RHEUM
15 LABYFER 16 FALTAM 27 LINFOS 18 DISPOS 29 RSCAM
20 EDIFIC 21 ACORD 22 FRACIL 23 INPUD 24 REPLC
25 MASCHE 26 MORIQ 27 PARTRAS 28 RATUS

VARIABLES TO BE USED

OUTCOME DIARRHEA

RESTRICTION

Variable RATOS
Value 99.00
Operator <

RUNTIME CHARACTERISTICS

Program MULTLE (WITH 80167 SUPPORT)
Dataset C:\ARCHIVOS\ARCHIVOS\MODEFLN.DAT
Dictionary C:\ARCHIVOS\ARCHIVOS\MODEFLN.DIC
Date Saturday, Mar 18, 1995
Time 21:26:51,47
<table>
<thead>
<tr>
<th>CUTOFF</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>R-SQRM</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATU.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C141ABC</td>
<td>0.4975</td>
<td>0.1179</td>
<td>0.8155</td>
<td>0.0001</td>
<td>1.580</td>
<td>1.256</td>
<td>1.992</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.3757</td>
<td>0.0716</td>
<td>0.9004</td>
<td>0.0000</td>
<td>1.768</td>
<td>1.306</td>
<td>2.340</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(2)</td>
<td>0.2595</td>
<td>0.0307</td>
<td>1.2304</td>
<td>0.2044</td>
<td>1.136</td>
<td>0.875</td>
<td>1.508</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(3)</td>
<td>0.3277</td>
<td>0.1662</td>
<td>1.3757</td>
<td>0.0015</td>
<td>1.995</td>
<td>1.224</td>
<td>2.968</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(4)</td>
<td>-0.0389</td>
<td>0.0312</td>
<td>-0.1274</td>
<td>0.9044</td>
<td>0.949</td>
<td>0.522</td>
<td>1.841</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(5)</td>
<td>0.0783</td>
<td>0.1349</td>
<td>0.5641</td>
<td>0.5663</td>
<td>1.081</td>
<td>0.916</td>
<td>1.343</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(6)</td>
<td>-0.0349</td>
<td>0.0557</td>
<td>-0.0767</td>
<td>0.9389</td>
<td>0.986</td>
<td>0.369</td>
<td>2.839</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(7)</td>
<td>0.6379</td>
<td>0.3742</td>
<td>2.1988</td>
<td>0.0791</td>
<td>1.939</td>
<td>0.926</td>
<td>4.016</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(8)</td>
<td>0.9232</td>
<td>0.1872</td>
<td>3.1449</td>
<td>0.0015</td>
<td>3.140</td>
<td>1.254</td>
<td>7.132</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(9)</td>
<td>0.3597</td>
<td>0.2454</td>
<td>1.4585</td>
<td>0.0000</td>
<td>2.062</td>
<td>1.960</td>
<td>4.446</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(10)</td>
<td>0.0205</td>
<td>0.0606</td>
<td>0.2870</td>
<td>0.0002</td>
<td>1.308</td>
<td>1.278</td>
<td>2.216</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(11)</td>
<td>0.0760</td>
<td>0.3211</td>
<td>2.3455</td>
<td>0.0000</td>
<td>1.097</td>
<td>1.595</td>
<td>2.078</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(12)</td>
<td>0.2896</td>
<td>0.4619</td>
<td>0.7847</td>
<td>0.0777</td>
<td>1.077</td>
<td>0.975</td>
<td>1.193</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(13)</td>
<td>0.4267</td>
<td>0.3984</td>
<td>1.0335</td>
<td>0.0578</td>
<td>0.893</td>
<td>0.552</td>
<td>1.560</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(14)</td>
<td>0.5300</td>
<td>0.4903</td>
<td>2.7972</td>
<td>0.0103</td>
<td>1.570</td>
<td>1.216</td>
<td>2.571</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(15)</td>
<td>0.2895</td>
<td>0.3152</td>
<td>2.6456</td>
<td>0.0289</td>
<td>1.318</td>
<td>1.010</td>
<td>1.752</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(16)</td>
<td>0.3500</td>
<td>0.3202</td>
<td>2.7712</td>
<td>0.0176</td>
<td>1.362</td>
<td>1.033</td>
<td>1.808</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(17)</td>
<td>0.3062</td>
<td>0.5612</td>
<td>0.5645</td>
<td>0.0053</td>
<td>2.730</td>
<td>0.925</td>
<td>8.416</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(18)</td>
<td>0.2756</td>
<td>0.3773</td>
<td>0.5816</td>
<td>0.0115</td>
<td>1.323</td>
<td>1.016</td>
<td>1.870</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>LANCZ2(19)</td>
<td>0.1681</td>
<td>0.3272</td>
<td>0.5106</td>
<td>0.0035</td>
<td>1.785</td>
<td>1.705</td>
<td>7.985</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.0315</td>
<td>0.0220</td>
<td>1.5890</td>
<td>0.1100</td>
<td>1.016</td>
<td>0.932</td>
<td>1.081</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.3267</td>
<td>0.2016</td>
<td>1.6755</td>
<td>0.0918</td>
<td>0.946</td>
<td>0.422</td>
<td>1.073</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EVCAUC</td>
<td>-0.0158</td>
<td>0.0094</td>
<td>1.0712</td>
<td>0.3114</td>
<td>0.982</td>
<td>0.642</td>
<td>1.214</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EVCAUC</td>
<td>0.4509</td>
<td>0.6186</td>
<td>0.9152</td>
<td>0.0288</td>
<td>1.307</td>
<td>0.879</td>
<td>4.537</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EVCAUC</td>
<td>0.1517</td>
<td>0.4626</td>
<td>0.3293</td>
<td>0.0944</td>
<td>1.099</td>
<td>0.484</td>
<td>2.570</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EVCAUC</td>
<td>0.3183</td>
<td>0.1843</td>
<td>1.7120</td>
<td>0.0071</td>
<td>1.593</td>
<td>0.855</td>
<td>2.947</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EVCAUC</td>
<td>0.2504</td>
<td>0.1449</td>
<td>1.7019</td>
<td>0.004</td>
<td>1.275</td>
<td>0.648</td>
<td>2.176</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EVCAUC</td>
<td>0.0185</td>
<td>0.0215</td>
<td>0.9765</td>
<td>0.0494</td>
<td>1.024</td>
<td>0.921</td>
<td>2.142</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>-0.0002</td>
<td>0.0012</td>
<td>-0.1237</td>
<td>0.4807</td>
<td>1.000</td>
<td>0.590</td>
<td>1.002</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.5294</td>
<td>0.2474</td>
<td>2.1472</td>
<td>0.0342</td>
<td>1.772</td>
<td>0.570</td>
<td>5.145</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.5082</td>
<td>0.2040</td>
<td>0.4004</td>
<td>0.0844</td>
<td>0.814</td>
<td>0.323</td>
<td>2.082</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.0666</td>
<td>0.0455</td>
<td>0.0402</td>
<td>0.4737</td>
<td>0.958</td>
<td>0.413</td>
<td>2.109</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.0188</td>
<td>0.0210</td>
<td>0.9209</td>
<td>0.0832</td>
<td>1.014</td>
<td>0.590</td>
<td>1.929</td>
<td>BASELINE</td>
</tr>
<tr>
<td></td>
<td>EVCAUC</td>
<td>0.0156</td>
<td>0.0215</td>
<td>0.7578</td>
<td>0.0543</td>
<td>1.044</td>
<td>0.773</td>
<td>1.320</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

Log-Likelihood (Cycle 1) = -1108.5294
Log-Likelihood (Cycle 2) = -861.7899

-3*Log-Likelihood = 1493.5789

Maximized Log-Likelihood

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>458.6982</td>
<td>34</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>533.6832</td>
<td>35</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Criteria and Model-Building Characteristics:

Analysis (Likelihood)...... unconditional
Tolerance.................. 0.00000000000

Saturday, Mar 19, 1993 13:26:53.62 Page 1
CONVERGENCE 8.0000100000
ITERATIONS 43
CONFIDENCE LEVEL 99%
RECORDS IN ANALYSIS 16000
ERROR OR WARNING MESSAGES ... NONE
TIME (SECONDS) 44.516
<table>
<thead>
<tr>
<th>CVTPOINT</th>
<th>TERM</th>
<th>COEF.</th>
<th>S.E.</th>
<th>S-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.Simple</td>
<td>C1000</td>
<td>0.47350</td>
<td>0.1214</td>
<td>4.2293</td>
<td>0.0000</td>
<td>1.620</td>
<td>1.190</td>
<td>1.997</td>
<td>BASELINE</td>
</tr>
<tr>
<td>Simple</td>
<td>C1100</td>
<td>0.5021</td>
<td>0.09559</td>
<td>10.7786</td>
<td>0.0000</td>
<td>2.726</td>
<td>1.637</td>
<td>4.457</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>L100L</td>
<td>0.4018</td>
<td>0.1593</td>
<td>3.6165</td>
<td>0.0002</td>
<td>1.648</td>
<td>1.027</td>
<td>2.650</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>L101L</td>
<td>0.5083</td>
<td>0.1620</td>
<td>3.1368</td>
<td>0.0021</td>
<td>1.963</td>
<td>1.217</td>
<td>3.124</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>L102L</td>
<td>0.4035</td>
<td>0.1210</td>
<td>4.0413</td>
<td>0.0005</td>
<td>1.528</td>
<td>0.590</td>
<td>3.844</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>L103L</td>
<td>0.2963</td>
<td>0.1402</td>
<td>2.0706</td>
<td>0.0928</td>
<td>1.303</td>
<td>0.436</td>
<td>4.823</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>L104L</td>
<td>0.2619</td>
<td>0.1410</td>
<td>0.8176</td>
<td>0.4144</td>
<td>0.574</td>
<td>0.348</td>
<td>0.906</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>L105L</td>
<td>0.9561</td>
<td>0.3619</td>
<td>2.7137</td>
<td>0.0071</td>
<td>1.001</td>
<td>1.326</td>
<td>3.085</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>L106L</td>
<td>0.7967</td>
<td>0.1691</td>
<td>4.7214</td>
<td>0.0000</td>
<td>2.312</td>
<td>1.019</td>
<td>5.234</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>L107L</td>
<td>0.8881</td>
<td>0.1260</td>
<td>7.1297</td>
<td>0.0000</td>
<td>2.055</td>
<td>1.818</td>
<td>3.112</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>A108L</td>
<td>0.4360</td>
<td>0.1314</td>
<td>3.3154</td>
<td>0.0009</td>
<td>1.437</td>
<td>1.195</td>
<td>1.964</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>A109L</td>
<td>0.7492</td>
<td>0.1256</td>
<td>5.9430</td>
<td>0.0000</td>
<td>3.158</td>
<td>1.646</td>
<td>6.264</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>P110L</td>
<td>0.2859</td>
<td>0.1576</td>
<td>1.8041</td>
<td>0.0702</td>
<td>1.242</td>
<td>0.548</td>
<td>0.977</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>P111L</td>
<td>-0.0967</td>
<td>0.1557</td>
<td>-0.6241</td>
<td>0.5323</td>
<td>0.524</td>
<td>0.069</td>
<td>3.359</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>P112L</td>
<td>0.8787</td>
<td>0.1892</td>
<td>2.9368</td>
<td>0.0034</td>
<td>1.904</td>
<td>1.204</td>
<td>2.945</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>H113L</td>
<td>0.3261</td>
<td>0.1263</td>
<td>2.5703</td>
<td>0.0103</td>
<td>1.838</td>
<td>1.040</td>
<td>3.099</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>H114L</td>
<td>0.3769</td>
<td>0.1234</td>
<td>3.0286</td>
<td>0.0029</td>
<td>1.469</td>
<td>1.041</td>
<td>2.504</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>P115L</td>
<td>1.2399</td>
<td>0.3255</td>
<td>2.2778</td>
<td>0.0231</td>
<td>1.706</td>
<td>1.156</td>
<td>2.233</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (cycle 2) = -1108.9304
LOG-LIKELIHOOD (cycle 13) = -842.1289

-2*LOG-LIKELIHOOD = 1724.4618

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>429.0283</td>
<td>18</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

LIBERLINE RATIO = 442.6693 | 18 | 0.0002

CRITERIA AND MODEL BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD) UNCONDITIONAL
TOLERANCE 0.0000000000
CONVERGENCE 0.0000000000
ITERATIONS 40
CONFIDENCE LEVEL 95%
RECOMMENDATIONS FOR ANALYSIS 1693
ERROR OR WARNING MESSAGES NO
TIME (SECONDS) 21.340
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

<table>
<thead>
<tr>
<th>CATEGOR</th>
<th>TERM</th>
<th>COEFF.</th>
<th>S.E.</th>
<th>E-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP.CATEG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>SHORT</td>
<td>0.4713</td>
<td>0.1194</td>
<td>4.1883</td>
<td>0.0000</td>
<td>1.638</td>
<td>1.285</td>
<td>1.997</td>
<td></td>
</tr>
<tr>
<td>SINGLE</td>
<td>HOSPITAL</td>
<td>0.5934</td>
<td>0.0864</td>
<td>10.5862</td>
<td>0.0000</td>
<td>2.910</td>
<td>2.023</td>
<td>3.820</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>LANCET</td>
<td>0.3947</td>
<td>0.1563</td>
<td>2.5055</td>
<td>0.0120</td>
<td>1.870</td>
<td>1.509</td>
<td>2.295</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>LANCET(2)</td>
<td>0.4813</td>
<td>0.1624</td>
<td>2.9394</td>
<td>0.0033</td>
<td>1.718</td>
<td>1.077</td>
<td>2.756</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>LANCET(3)</td>
<td>0.0787</td>
<td>0.1233</td>
<td>0.6212</td>
<td>0.0094</td>
<td>1.381</td>
<td>1.075</td>
<td>1.813</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCET</td>
<td>0.2299</td>
<td>0.1409</td>
<td>1.6204</td>
<td>0.0005</td>
<td>1.313</td>
<td>1.041</td>
<td>1.707</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>LANCET</td>
<td>0.0182</td>
<td>0.4008</td>
<td>0.1321</td>
<td>0.9490</td>
<td>1.009</td>
<td>1.044</td>
<td>2.155</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>LANCET</td>
<td>0.5034</td>
<td>0.3455</td>
<td>2.7559</td>
<td>0.0058</td>
<td>2.952</td>
<td>2.130</td>
<td>5.078</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.25</td>
<td>LANCET</td>
<td>0.8104</td>
<td>0.1496</td>
<td>5.6315</td>
<td>0.0000</td>
<td>1.751</td>
<td>1.614</td>
<td>1.213</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>BAVI</td>
<td>0.6982</td>
<td>0.1243</td>
<td>7.1355</td>
<td>0.0000</td>
<td>2.055</td>
<td>1.937</td>
<td>3.164</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>BAVI</td>
<td>0.5164</td>
<td>0.1337</td>
<td>3.1357</td>
<td>0.0009</td>
<td>1.667</td>
<td>1.183</td>
<td>2.393</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>BAVI(2)</td>
<td>0.7308</td>
<td>0.1259</td>
<td>1.8463</td>
<td>0.0000</td>
<td>1.049</td>
<td>1.633</td>
<td>2.674</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>BAVI</td>
<td>0.5465</td>
<td>0.1580</td>
<td>3.4908</td>
<td>0.0465</td>
<td>2.976</td>
<td>1.906</td>
<td>4.067</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.50</td>
<td>BAVI</td>
<td>0.0997</td>
<td>0.1462</td>
<td>0.6671</td>
<td>0.4997</td>
<td>1.132</td>
<td>1.042</td>
<td>1.226</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>MODO</td>
<td>0.3720</td>
<td>0.3000</td>
<td>1.9610</td>
<td>0.0523</td>
<td>0.373</td>
<td>1.198</td>
<td>2.624</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>MODO</td>
<td>0.3973</td>
<td>0.1560</td>
<td>2.5178</td>
<td>0.0025</td>
<td>1.645</td>
<td>1.260</td>
<td>2.156</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>PREP</td>
<td>0.3359</td>
<td>0.1633</td>
<td>3.8473</td>
<td>0.0001</td>
<td>1.514</td>
<td>1.278</td>
<td>2.832</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.60</td>
<td>RELAX</td>
<td>0.1686</td>
<td>0.4277</td>
<td>2.6406</td>
<td>0.0078</td>
<td>1.255</td>
<td>1.189</td>
<td>2.958</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1108.516

LOG-LIKELIHOOD (CYCLE 5) = -918.3245

-2 MAXIMIZED LOG-LIKELIHOOD = 2716.3485

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE</td>
<td>433.2183</td>
<td>19</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>500.8123</td>
<td>18</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>0.2079</td>
<td>1</td>
<td>0.00042</td>
<td>RELAX</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

<table>
<thead>
<tr>
<th>ANALYSIS (LIKELIHOOD)</th>
<th>UNCONDITIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOLERANCE</td>
<td>0.0000000006</td>
</tr>
<tr>
<td>CONVERGENCE</td>
<td>0.0000000006</td>
</tr>
<tr>
<td>ITERATIONS</td>
<td>40</td>
</tr>
<tr>
<td>CONFIDENCE LEVEL</td>
<td>95%</td>
</tr>
<tr>
<td>RECORDS IN ANALYSIS</td>
<td>1600</td>
</tr>
<tr>
<td>REJECT OR WARNNING MESSAGES</td>
<td>MORE</td>
</tr>
<tr>
<td>TIME (SECONDS)</td>
<td>10,125</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>TERM</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>.000</td>
<td>CHIARC</td>
</tr>
<tr>
<td>.500</td>
<td>TDCRANC</td>
</tr>
<tr>
<td>2.500</td>
<td>LAMCP3(2)</td>
</tr>
<tr>
<td>5.000</td>
<td>LAMCP3(3)</td>
</tr>
<tr>
<td>1.500</td>
<td>LAMCP3(4)</td>
</tr>
<tr>
<td>2.500</td>
<td>LAMCP5(3)</td>
</tr>
<tr>
<td>3.500</td>
<td>LAMCP5(4)</td>
</tr>
<tr>
<td>4.500</td>
<td>LAMCP5(8)</td>
</tr>
<tr>
<td>5.500</td>
<td>LAMCP8(6)</td>
</tr>
<tr>
<td>0.500</td>
<td>RESMAN(2)</td>
</tr>
<tr>
<td>1.500</td>
<td>RESMTCR(2)</td>
</tr>
<tr>
<td>2.500</td>
<td>RESMTCR(3)</td>
</tr>
<tr>
<td>2.500</td>
<td>FREQLC2(2)</td>
</tr>
<tr>
<td>2.500</td>
<td>FREQLC2(3)</td>
</tr>
<tr>
<td>2.500</td>
<td>FREQLC2(4)</td>
</tr>
<tr>
<td>0.500</td>
<td>SWPRCA(2)</td>
</tr>
<tr>
<td>0.500</td>
<td>MDECA(2)</td>
</tr>
<tr>
<td>0.500</td>
<td>MDEFAL(2)</td>
</tr>
<tr>
<td>0.500</td>
<td>RESBAP(3)</td>
</tr>
<tr>
<td>1.500</td>
<td>SEL(2)</td>
</tr>
<tr>
<td></td>
<td>CONSTANT</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 5) = -1304.9308
LOG-LIKELIHOOD (CYCLE 6) = -825.5409

-2*MAXIMIZED LOG-LIKELIHOOD = 3711.0818

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.P.</th>
<th>P-VALUE</th>
<th>VARIABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>437.5956</td>
<td>20</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>505.9793</td>
<td>20</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LIKELIHOOD RATIO</td>
<td>5.1677</td>
<td>1</td>
<td>0.0230</td>
<td>OEL</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD) UNCONDITIONAL
TOLERANCE 0.0000010000
CONVERGENCE 0.0000100000
ITERATIONS 40
CONFIDENCE LEVEL 95%
RECORDS IN ANALYSIS 2603
ERROR OR WARNING MESSAGES NONE
TIME (SECONDS) 23.985
<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>TECH.</th>
<th>COEF.</th>
<th>S.E.</th>
<th>Z-Score</th>
<th>P-Value</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF. CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>CHANCE</td>
<td>0.6916</td>
<td>0.1131</td>
<td>5.9768</td>
<td>0.0021</td>
<td>2.757</td>
<td>1.235</td>
<td>1.961</td>
<td>BASELINE</td>
</tr>
<tr>
<td>SINGLE</td>
<td>ICHANCE</td>
<td>0.5888</td>
<td>0.0962</td>
<td>6.0173</td>
<td>0.0025</td>
<td>2.757</td>
<td>1.430</td>
<td>1.923</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>GANTZER</td>
<td>0.3437</td>
<td>0.1884</td>
<td>4.5326</td>
<td>0.0002</td>
<td>1.437</td>
<td>0.954</td>
<td>2.076</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>FRANKS</td>
<td>0.6623</td>
<td>0.1855</td>
<td>3.5826</td>
<td>0.0015</td>
<td>1.314</td>
<td>1.840</td>
<td>3.240</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>LINCHE</td>
<td>0.0417</td>
<td>0.0254</td>
<td>1.6073</td>
<td>0.0606</td>
<td>1.020</td>
<td>0.181</td>
<td>2.247</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>LINCHE</td>
<td>0.2121</td>
<td>0.1421</td>
<td>1.5001</td>
<td>0.0635</td>
<td>1.147</td>
<td>0.946</td>
<td>1.474</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>LINCHE</td>
<td>0.0934</td>
<td>0.0453</td>
<td>0.0077</td>
<td>0.9380</td>
<td>1.100</td>
<td>0.413</td>
<td>2.492</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>LINCHE</td>
<td>0.7631</td>
<td>0.5883</td>
<td>1.2873</td>
<td>0.1009</td>
<td>1.100</td>
<td>0.413</td>
<td>2.492</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>LINCHE</td>
<td>0.0731</td>
<td>0.1867</td>
<td>3.9876</td>
<td>0.0002</td>
<td>3.987</td>
<td>1.661</td>
<td>2.783</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.00</td>
<td>ESCAMO</td>
<td>0.3832</td>
<td>0.1972</td>
<td>6.9740</td>
<td>0.0000</td>
<td>1.359</td>
<td>0.318</td>
<td>0.928</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>ESCAMO</td>
<td>0.4436</td>
<td>0.1326</td>
<td>3.4014</td>
<td>0.0005</td>
<td>1.280</td>
<td>0.316</td>
<td>2.612</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>ACONC</td>
<td>0.7122</td>
<td>0.1264</td>
<td>5.6377</td>
<td>0.0000</td>
<td>2.018</td>
<td>0.921</td>
<td>2.613</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>PERSOL</td>
<td>0.2534</td>
<td>0.1838</td>
<td>1.3812</td>
<td>0.0003</td>
<td>1.354</td>
<td>0.922</td>
<td>1.444</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.00</td>
<td>PERSOL</td>
<td>0.0025</td>
<td>0.1507</td>
<td>0.4697</td>
<td>0.6418</td>
<td>0.912</td>
<td>0.620</td>
<td>1.341</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.00</td>
<td>PERSOL</td>
<td>0.5664</td>
<td>0.2013</td>
<td>2.7543</td>
<td>0.0064</td>
<td>1.732</td>
<td>1.164</td>
<td>2.562</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EMDPD</td>
<td>0.3164</td>
<td>0.1270</td>
<td>2.4805</td>
<td>0.0128</td>
<td>1.572</td>
<td>1.070</td>
<td>1.780</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>MOOS1</td>
<td>0.3265</td>
<td>0.1328</td>
<td>2.4804</td>
<td>0.0128</td>
<td>1.572</td>
<td>1.070</td>
<td>1.780</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.00</td>
<td>PREPAC</td>
<td>2.1396</td>
<td>0.2168</td>
<td>3.7323</td>
<td>0.0001</td>
<td>1.282</td>
<td>1.764</td>
<td>6.107</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.00</td>
<td>ARMLE</td>
<td>3.3759</td>
<td>0.4367</td>
<td>2.4534</td>
<td>0.0140</td>
<td>1.343</td>
<td>1.310</td>
<td>2.451</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>CEL1</td>
<td>0.1601</td>
<td>0.1578</td>
<td>1.0500</td>
<td>0.2915</td>
<td>1.050</td>
<td>1.050</td>
<td>1.050</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.00</td>
<td>BARAYAS</td>
<td>0.2469</td>
<td>0.1216</td>
<td>2.0183</td>
<td>0.0416</td>
<td>2.278</td>
<td>1.007</td>
<td>1.623</td>
<td>BASELINE</td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td>5.7274</td>
<td>0.4890</td>
<td>12.335</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG-likelihood (cycle 1) = -1108.5106
LOG-likelihood (cycle 4) = -453.5047

-2 * MAXMINER LOG-likelihood = 3767.3058

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>440.8132</td>
<td>21</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>510.6117</td>
<td>21</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>4.0724</td>
<td>1</td>
<td>0.0438</td>
<td>BARAYAS</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-FITTING CHARACTERISTICS:

ANALYSIS (Likelihood) UNCONDITIONAL
TOLERANCE ... 0.0000000000
CONVERGENCE .. 0.0000000000
ITERATIONS .. 40
CONFIDENCE LEVEL 99%
RECORDS IN ANALYSIS 2003
ERROR OR WARNING MESSAGES NONE
TIME (SECONDS) 15,050
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIXTEEN</td>
<td>CHAM</td>
</tr>
<tr>
<td>SIXTEEN</td>
<td>RICM</td>
</tr>
<tr>
<td>LANCET</td>
<td>3.05</td>
</tr>
<tr>
<td>LANCET</td>
<td>5.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>2.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>2.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>2.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>4.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>5.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>0.80</td>
</tr>
<tr>
<td>LANCET</td>
<td>5.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>2.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>1.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>2.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>4.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>0.80</td>
</tr>
<tr>
<td>LANCET</td>
<td>6.30</td>
</tr>
<tr>
<td>LANCET</td>
<td>0.05</td>
</tr>
<tr>
<td>LANCET</td>
<td>1.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>2.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>6.00</td>
</tr>
<tr>
<td>LANCET</td>
<td>0.75</td>
</tr>
<tr>
<td>LANCET</td>
<td>1.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>0.50</td>
</tr>
<tr>
<td>LANCET</td>
<td>0.50</td>
</tr>
</tbody>
</table>

LOG-LIKELIHOOD (CYCLE 1) = -1138.8105
LOG-LIKELIHOOD (CYCLE 2) = -861.7489

-2*MAXIMIZED LOG-LIKELIOHD= 1083.3789

<table>
<thead>
<tr>
<th>STATISTIC</th>
<th>F.R.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCARE</td>
<td>458.1802</td>
<td>36</td>
<td>0.0000</td>
</tr>
<tr>
<td>LANCET</td>
<td>533.4402</td>
<td>36</td>
<td>0.0000</td>
</tr>
<tr>
<td>RELATE</td>
<td>23.4304</td>
<td>15</td>
<td>0.0754</td>
</tr>
<tr>
<td>RELATE</td>
<td>0.1281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EISLET</td>
<td>0.1458</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD).................. UNCONDITIONAL
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance</td>
<td>0.0000010000</td>
</tr>
<tr>
<td>Convergence</td>
<td>0.0000100000</td>
</tr>
<tr>
<td>Iterations</td>
<td>40</td>
</tr>
<tr>
<td>Confidence Level</td>
<td>95%</td>
</tr>
<tr>
<td>Scenarios in Analysis</td>
<td>1403</td>
</tr>
<tr>
<td>Error or Warning Messages</td>
<td>NONE</td>
</tr>
<tr>
<td>Time (seconds)</td>
<td>48.900</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>TERM</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>S.00</td>
<td>CHIANT</td>
</tr>
<tr>
<td>S.00</td>
<td>JOCIANC</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCHE (2)</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCHE (3)</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCHE (2)</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCHE (3)</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCHE (4)</td>
</tr>
<tr>
<td>4.50</td>
<td>LANCHE (5)</td>
</tr>
<tr>
<td>5.50</td>
<td>LANCHE (6)</td>
</tr>
<tr>
<td>5.50</td>
<td>RECOM (2)</td>
</tr>
<tr>
<td>2.50</td>
<td>REXIPE (2)</td>
</tr>
<tr>
<td>2.50</td>
<td>REXIPE (2)</td>
</tr>
<tr>
<td>2.50</td>
<td>REXIPE (3)</td>
</tr>
<tr>
<td>4.50</td>
<td>REXIPE (4)</td>
</tr>
<tr>
<td>0.00</td>
<td>ZM21 (2)</td>
</tr>
<tr>
<td>4.50</td>
<td>ZM12 (2)</td>
</tr>
<tr>
<td>4.50</td>
<td>ZM12 (3)</td>
</tr>
<tr>
<td>1.50</td>
<td>OEL (2)</td>
</tr>
<tr>
<td>0.50</td>
<td>PARELI (2)</td>
</tr>
<tr>
<td>2.50</td>
<td>NARATAS (2)</td>
</tr>
</tbody>
</table>

CONSTANT: -5.6465; 0.4353; -12.5441; 0.0000

LOG-LIKELIHOOD (CYCLE 1) = -1200.7148
LOG-LIKELIHOOD (CYCLE 5) = -926.0547

\[\chi^2 \text{MAXIMIZED LOG-LIKELIHOOD} = 2833.1895 \]

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
</table>

| SCORE | 474.0566 | 21 | 0.0000 |
| Likelhood Ratio | 549.2483 | 21 | 0.0000 |

CRITERIA AND MODEL BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD): UNCONDITIONAL
TOLERANCE: 0.0000000000
CONVERGENCE: 0.0000000000
ITERATIONS: 40
CONFIDENCE LEVEL: 95%
RECORDS IN ANALYSIS: 3715
ERROR OR WARNING MESSAGES: NONE
TIME (SECONDS): 23.972
MODELO FINAL - TESTE DE MODIFICAÇÕES DE EFEITO

<table>
<thead>
<tr>
<th>OUTPOINT</th>
<th>TEST</th>
<th>COMP.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REP. CVTSG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPEL</td>
<td>CRICR</td>
<td>0.453</td>
<td>0.207</td>
<td>2.147</td>
<td>0.0309</td>
<td>1.573</td>
<td>2.274</td>
<td>2.942</td>
<td></td>
</tr>
<tr>
<td>SIMPEL</td>
<td>CRICR</td>
<td>0.545</td>
<td>0.254</td>
<td>2.100</td>
<td>0.0209</td>
<td>1.612</td>
<td>2.629</td>
<td>2.516</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>LANCAP</td>
<td>0.356</td>
<td>0.192</td>
<td>1.864</td>
<td>0.0622</td>
<td>1.588</td>
<td>2.802</td>
<td>1.127</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>LANCAP</td>
<td>0.432</td>
<td>0.226</td>
<td>1.488</td>
<td>0.0482</td>
<td>1.616</td>
<td>3.188</td>
<td>2.321</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>LANCAP</td>
<td>0.406</td>
<td>0.198</td>
<td>2.061</td>
<td>0.0022</td>
<td>1.606</td>
<td>0.946</td>
<td>2.860</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>LANCAP</td>
<td>0.430</td>
<td>0.217</td>
<td>0.954</td>
<td>0.4459</td>
<td>1.365</td>
<td>0.874</td>
<td>1.394</td>
<td>BASELINE</td>
</tr>
<tr>
<td>3.50</td>
<td>LANCAP</td>
<td>0.446</td>
<td>0.229</td>
<td>0.834</td>
<td>0.3591</td>
<td>1.243</td>
<td>0.933</td>
<td>1.641</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.50</td>
<td>LANCAP</td>
<td>0.425</td>
<td>0.216</td>
<td>0.892</td>
<td>0.3864</td>
<td>1.270</td>
<td>0.954</td>
<td>1.755</td>
<td>BASELINE</td>
</tr>
<tr>
<td>5.50</td>
<td>LANCAP</td>
<td>0.700</td>
<td>0.370</td>
<td>1.908</td>
<td>0.0551</td>
<td>1.517</td>
<td>1.721</td>
<td>2.685</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>ESCOAR</td>
<td>0.359</td>
<td>0.192</td>
<td>1.864</td>
<td>0.0622</td>
<td>1.588</td>
<td>2.802</td>
<td>1.127</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>ESCOAR</td>
<td>0.415</td>
<td>0.233</td>
<td>1.735</td>
<td>0.0837</td>
<td>1.534</td>
<td>2.074</td>
<td>1.941</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>ACONF</td>
<td>0.387</td>
<td>0.181</td>
<td>2.129</td>
<td>0.0337</td>
<td>1.665</td>
<td>1.089</td>
<td>2.971</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>PREDI (2)</td>
<td>0.289</td>
<td>0.132</td>
<td>1.933</td>
<td>0.0531</td>
<td>1.343</td>
<td>0.996</td>
<td>1.811</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>PREDI (3)</td>
<td>0.182</td>
<td>0.190</td>
<td>1.950</td>
<td>0.0520</td>
<td>0.834</td>
<td>0.874</td>
<td>1.219</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>PREDI (4)</td>
<td>0.451</td>
<td>0.193</td>
<td>2.447</td>
<td>0.0146</td>
<td>1.559</td>
<td>1.946</td>
<td>2.228</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EMCO</td>
<td>0.304</td>
<td>0.124</td>
<td>2.468</td>
<td>0.0144</td>
<td>1.559</td>
<td>1.946</td>
<td>2.228</td>
<td>BASELINE</td>
</tr>
<tr>
<td>4.50</td>
<td>EMCO</td>
<td>0.315</td>
<td>0.133</td>
<td>2.384</td>
<td>0.0178</td>
<td>1.465</td>
<td>1.145</td>
<td>1.842</td>
<td>BASELINE</td>
</tr>
<tr>
<td>6.00</td>
<td>EMCO</td>
<td>0.892</td>
<td>0.401</td>
<td>2.335</td>
<td>0.0189</td>
<td>1.603</td>
<td>1.215</td>
<td>2.169</td>
<td>BASELINE</td>
</tr>
<tr>
<td>1.50</td>
<td>EMCO</td>
<td>0.211</td>
<td>0.094</td>
<td>2.312</td>
<td>0.0208</td>
<td>1.403</td>
<td>1.215</td>
<td>1.695</td>
<td>BASELINE</td>
</tr>
<tr>
<td>0.50</td>
<td>EMCO</td>
<td>0.211</td>
<td>0.094</td>
<td>2.312</td>
<td>0.0208</td>
<td>1.403</td>
<td>1.215</td>
<td>1.695</td>
<td>BASELINE</td>
</tr>
<tr>
<td>2.50</td>
<td>EMCO</td>
<td>0.333</td>
<td>0.142</td>
<td>2.357</td>
<td>0.0189</td>
<td>1.465</td>
<td>1.145</td>
<td>1.842</td>
<td>BASELINE</td>
</tr>
<tr>
<td>ENTER: ESCOAR (2)</td>
<td>ACONF (2)</td>
<td>0.774</td>
<td>0.433</td>
<td>3.205</td>
<td>0.0013</td>
<td>1.279</td>
<td>-</td>
<td>-</td>
<td>INT. TERM.</td>
</tr>
</tbody>
</table>

CONSTANT: -5.6219

LOG-LIKELYHOOD (CYCLE 2) = -1220.7196
LOG-LIKELYHOOD (CYCLE 25) = -1220.7179

-J-MAXIMUM LOG-LIKELYHOOD- 1883.9358

TEST STATISTIC S.E. P-VALUE VARIABLE外

- ESCOR 483.6355 32 0.0000
- LEEKHOOD RATIO 553.5026 32 0.0000
- LEEKHOOD RATIO -20.3537 1 0.0013 ESCOAR^ACOND

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

- ANALYSIS (LIKELIHOOD) = UNCONDITIONAL
- TOLERANCE = 0.000000100009
- CONVERGENCE = 0.60000100009
- ITERATIONS = 49
- CONFIDENCE LEVEL = 95%
- RECORDS IN ANALYSIS = 2715
- ERROR OR WARNING MESSAGES = None
- TIME (SECONDS) = 73.059
MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

<table>
<thead>
<tr>
<th>CUTOPOINT</th>
<th>TERM</th>
<th>OEFF.</th>
<th>S.R.</th>
<th>B-SCORE</th>
<th>P-VALUE</th>
<th>O.R.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.GRAV.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SINGLE</td>
<td>CRNP</td>
<td>0.6454</td>
<td>0.1082</td>
<td>4.3028</td>
<td>0.0026</td>
<td>2.993</td>
<td>1.288</td>
<td>1.969</td>
<td></td>
</tr>
<tr>
<td>SINGLE</td>
<td>LDLCH</td>
<td>0.5907</td>
<td>0.0567</td>
<td>20.9467</td>
<td>0.0000</td>
<td>2.820</td>
<td>1.615</td>
<td>2.026</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>LAMPHES(2)</td>
<td>0.3764</td>
<td>0.1934</td>
<td>1.9274</td>
<td>0.0527</td>
<td>1.455</td>
<td>1.014</td>
<td>1.225</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>LAMPHES(3)</td>
<td>0.4831</td>
<td>0.1774</td>
<td>3.0573</td>
<td>0.0022</td>
<td>1.616</td>
<td>1.089</td>
<td>1.263</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>LMPCA(3)</td>
<td>-1.9615</td>
<td>0.5555</td>
<td>-1.8749</td>
<td>0.0608</td>
<td>0.181</td>
<td>0.031</td>
<td>1.048</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>LMPCA(2)</td>
<td>0.2179</td>
<td>0.1993</td>
<td>0.6027</td>
<td>0.3767</td>
<td>1.887</td>
<td>1.010</td>
<td>1.240</td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>LMPCA(4)</td>
<td>-0.6720</td>
<td>0.7229</td>
<td>-0.7265</td>
<td>0.5483</td>
<td>0.509</td>
<td>0.120</td>
<td>1.213</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>LMPCA(5)</td>
<td>0.4736</td>
<td>0.5200</td>
<td>0.9198</td>
<td>0.2628</td>
<td>1.105</td>
<td>0.585</td>
<td>2.250</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>LMPCA(6)</td>
<td>0.2353</td>
<td>0.2508</td>
<td>1.3068</td>
<td>0.0800</td>
<td>1.460</td>
<td>0.148</td>
<td>2.246</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>RECOD(2)</td>
<td>0.3896</td>
<td>0.1966</td>
<td>2.0816</td>
<td>0.0415</td>
<td>1.717</td>
<td>1.004</td>
<td>2.707</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>RECOD(3)</td>
<td>0.4478</td>
<td>0.1293</td>
<td>1.6611</td>
<td>0.0009</td>
<td>1.646</td>
<td>1.121</td>
<td>2.615</td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>ACOND(1)</td>
<td>0.3474</td>
<td>0.1824</td>
<td>2.4110</td>
<td>0.0119</td>
<td>1.644</td>
<td>1.001</td>
<td>2.363</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>PARCLO(2)</td>
<td>0.2934</td>
<td>0.1514</td>
<td>1.5223</td>
<td>0.0558</td>
<td>1.581</td>
<td>0.993</td>
<td>2.111</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>PRECLO(5)</td>
<td>-0.3267</td>
<td>0.1814</td>
<td>-2.3220</td>
<td>0.0257</td>
<td>0.706</td>
<td>0.393</td>
<td>1.372</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>PRECLO(4)</td>
<td>0.4610</td>
<td>0.2552</td>
<td>3.3903</td>
<td>0.0019</td>
<td>2.549</td>
<td>1.008</td>
<td>2.310</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>ENGOC(2)</td>
<td>0.3148</td>
<td>0.1218</td>
<td>2.7300</td>
<td>0.0065</td>
<td>1.887</td>
<td>1.038</td>
<td>3.777</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>MODG(3)</td>
<td>0.3325</td>
<td>0.2213</td>
<td>2.4586</td>
<td>0.0078</td>
<td>1.361</td>
<td>1.008</td>
<td>1.751</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>REDG(2)</td>
<td>0.9748</td>
<td>0.4622</td>
<td>2.4184</td>
<td>0.0192</td>
<td>1.654</td>
<td>1.029</td>
<td>2.841</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>SLE(2)</td>
<td>0.3130</td>
<td>0.1517</td>
<td>2.1224</td>
<td>0.0337</td>
<td>1.820</td>
<td>1.025</td>
<td>2.458</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>PREVA(2)</td>
<td>0.0107</td>
<td>0.2339</td>
<td>3.4605</td>
<td>0.0020</td>
<td>2.764</td>
<td>1.354</td>
<td>5.156</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>BARTAS(2)</td>
<td>0.2287</td>
<td>0.1265</td>
<td>1.2336</td>
<td>0.2152</td>
<td>1.215</td>
<td>0.378</td>
<td>3.035</td>
<td></td>
</tr>
<tr>
<td>INTENS.</td>
<td>BSCOA(1)ACOND(2)</td>
<td>2.7614</td>
<td>0.2440</td>
<td>3.2006</td>
<td>0.0018</td>
<td>2.141</td>
<td>-</td>
<td>-</td>
<td>INT.TRM.</td>
</tr>
<tr>
<td>INTENS.</td>
<td>LMPCA(3)BARTAS(2)</td>
<td>1.9798</td>
<td>0.7039</td>
<td>2.4292</td>
<td>0.0151</td>
<td>2.629</td>
<td>-</td>
<td>-</td>
<td>INT.TRM.</td>
</tr>
<tr>
<td>INTENS.</td>
<td>LMPCA(3)BARTAS(2)</td>
<td>-0.2733</td>
<td>0.2710</td>
<td>-0.0397</td>
<td>0.0831</td>
<td>0.006</td>
<td>-</td>
<td>-</td>
<td>INT.TRM.</td>
</tr>
<tr>
<td>INTENS.</td>
<td>LMPCA(4)BARTAS(2)</td>
<td>1.0904</td>
<td>0.9452</td>
<td>1.1816</td>
<td>0.2487</td>
<td>2.978</td>
<td>-</td>
<td>-</td>
<td>INT.TRM.</td>
</tr>
<tr>
<td>INTENS.</td>
<td>LMPCA(5)BARTAS(2)</td>
<td>0.3230</td>
<td>0.6482</td>
<td>0.6151</td>
<td>0.5132</td>
<td>1.344</td>
<td>-</td>
<td>-</td>
<td>INT.TRM.</td>
</tr>
<tr>
<td>INTENS.</td>
<td>LMPCA(6)BARTAS(2)</td>
<td>0.5644</td>
<td>0.3380</td>
<td>1.7125</td>
<td>0.0851</td>
<td>2.759</td>
<td>-</td>
<td>-</td>
<td>INT.TRM.</td>
</tr>
</tbody>
</table>

CONSTANT -5.3378 0.6461 -12.8927 0.0026

LOG-LIKELIHOOD (CYCLE 1) = -1200.7169
LOG-LIKELIHOOD (CYCLE 2) = -814.2995

-3*LOG-LIKELIHOOD = 1828.5910

<table>
<thead>
<tr>
<th>TEST</th>
<th>STATISTIC</th>
<th>D.F.</th>
<th>P-VALUE</th>
<th>VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCORE</td>
<td>493.8102</td>
<td>37</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LNIKELIHOOD RATIO</td>
<td>572.8469</td>
<td>37</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>LNIKELIHOOD RATIO</td>
<td>11.5448</td>
<td>3</td>
<td>0.0313</td>
<td>LMPCA*BARTAS</td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

<table>
<thead>
<tr>
<th>ANALYSIS (LIKELIHOOD)</th>
<th>UNCONDITIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOLERANCE</td>
<td>0.0002010200</td>
</tr>
<tr>
<td>CONVERGENCE</td>
<td>0.6000120000</td>
</tr>
<tr>
<td>ITERATIONS</td>
<td>40</td>
</tr>
<tr>
<td>CONFIDENCE LEVEL</td>
<td>95%</td>
</tr>
<tr>
<td>RECORDS IN ANALYSIS</td>
<td>1715</td>
</tr>
<tr>
<td>ERRORS ON RANKING MESSAGES</td>
<td>HOME</td>
</tr>
<tr>
<td>TIME (SECONDS)</td>
<td>20.492</td>
</tr>
</tbody>
</table>
MULTILE - MULTIPLE LOGISTIC REGRESSION BY UNCONDITIONAL AND CONDITIONAL METHODS

Saturday, Mar 20, 1993 23:39:24.10 Page 10

<table>
<thead>
<tr>
<th>CRITPOINT</th>
<th>TERM</th>
<th>COEF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.B.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPLE</td>
<td>CRBACK</td>
<td>0.6310</td>
<td>0.2125</td>
<td>2.9919</td>
<td>1.6405</td>
<td>1.287</td>
<td>2.845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMPLE</td>
<td>CRBACK</td>
<td>0.6015</td>
<td>0.2125</td>
<td>2.9919</td>
<td>1.6405</td>
<td>1.287</td>
<td>2.845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>LAM(1)</td>
<td>0.3942</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>LAM(1)</td>
<td>0.4148</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>LAM(1)</td>
<td>0.4232</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>LAM(1)</td>
<td>0.4316</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>BCGA(2)</td>
<td>0.3445</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>BCGA(2)</td>
<td>0.3591</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>BCGA(2)</td>
<td>0.3737</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>BCGA(2)</td>
<td>0.3883</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>BCGA(2)</td>
<td>0.4029</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>BCGA(2)</td>
<td>0.4175</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>MOD(1)</td>
<td>0.6562</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>MOD(1)</td>
<td>0.6708</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>MOD(1)</td>
<td>0.6854</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>MOD(1)</td>
<td>0.7000</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>MOD(1)</td>
<td>0.7146</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>MOD(1)</td>
<td>0.7292</td>
<td>0.1678</td>
<td>2.3283</td>
<td>0.0200</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTER.

<table>
<thead>
<tr>
<th>TERM</th>
<th>COEF.</th>
<th>S.E.</th>
<th>Z-SCORE</th>
<th>P-VALUE</th>
<th>O.B.</th>
<th>LOWER</th>
<th>UPPER</th>
<th>REF.CATG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECO(2)</td>
<td>0.7735</td>
<td>0.1936</td>
<td>2.0823</td>
<td>0.0314</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAM(1)</td>
<td>0.7724</td>
<td>0.1936</td>
<td>2.0823</td>
<td>0.0314</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCGA(2)</td>
<td>0.6302</td>
<td>0.1936</td>
<td>2.0823</td>
<td>0.0314</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD(1)</td>
<td>0.6302</td>
<td>0.1936</td>
<td>2.0823</td>
<td>0.0314</td>
<td>0.125</td>
<td>1.575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRITERIA AND MODEL-BUILDING CHARACTERISTICS:

ANALYSIS (LIKELIHOOD) UNCONDITIONAL

- **TOUPLANCE**: 0.0000000000
- **CONVERGENCE**: 0.0000000000
- **LIMITATIONS**: 40
- **CONFIDENCE LEVELS**: 99% (NOTE, ERROR IN ANALYSIS: WONT)
- **ERRORS OR WARNING MESSAGES**: WONT

TIME (SECONDS): 22.100
7.10- ANEXO J

RISCO ATRIBUÍVEL - RESULTADOS
<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CATEGORIAS</th>
<th>RA (%) (IC a 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mãe vive com a criança?</td>
<td>não x sim</td>
<td>1,39 (0,19 - 2,44)</td>
</tr>
<tr>
<td>Pai vive com a criança?</td>
<td>não x sim</td>
<td>4,16 (0,71 - 7,61)</td>
</tr>
<tr>
<td>Número de crianças < 5 anos que</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>vivem na casa</td>
<td>2</td>
<td>15,67 (11,12 - 20,23)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3,54 (1,95 - 5,12)</td>
</tr>
<tr>
<td></td>
<td>4 ou mais</td>
<td>2,33 (1,11 - 3,55)</td>
</tr>
<tr>
<td>Ordem de nascimento</td>
<td>1ª</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2ª</td>
<td>15,14 (11,74 - 18,54)</td>
</tr>
<tr>
<td></td>
<td>3ª ou mais</td>
<td>2,30 (1,07 - 3,53)</td>
</tr>
<tr>
<td>Instrução da mãe</td>
<td>2º grau completo ou mais</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2º grau incompleto</td>
<td>1,04 [-0,51 - 2,58]</td>
</tr>
<tr>
<td></td>
<td>1º grau completo</td>
<td>1,85 [-0,98 - 4,67]</td>
</tr>
<tr>
<td></td>
<td>1º grau incompleto</td>
<td>46,09 (37,23 - 54,96)</td>
</tr>
<tr>
<td></td>
<td>lê e/ou escreve</td>
<td>1,09 (0,29 - 1,88)</td>
</tr>
<tr>
<td></td>
<td>nem lê, nem escreve</td>
<td>2,21 (1,18 - 3,23)</td>
</tr>
<tr>
<td>Instrução do pai</td>
<td>2º grau completo ou mais</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2º grau incompleto</td>
<td>0,71 [-0,96 - 2,37]</td>
</tr>
<tr>
<td></td>
<td>1º grau completo</td>
<td>4,86 (1,51 - 8,20)</td>
</tr>
<tr>
<td></td>
<td>1º grau incompleto</td>
<td>48,28 (39,75 - 56,81)</td>
</tr>
<tr>
<td></td>
<td>lê e/ou escreve</td>
<td>1,61 (0,68 - 2,54)</td>
</tr>
<tr>
<td></td>
<td>nem lê, nem escreve</td>
<td>1,83 (0,88 - 2,78)</td>
</tr>
<tr>
<td>Instrução de outra pessoa que</td>
<td>2º grau completo ou mais</td>
<td>-</td>
</tr>
<tr>
<td>cuida da criança</td>
<td>2º grau incompleto</td>
<td>1,03 [-3,42 - 5,48]</td>
</tr>
<tr>
<td></td>
<td>1º grau completo</td>
<td>0,78 [-3,94 - 5,49]</td>
</tr>
<tr>
<td></td>
<td>1º grau incompleto</td>
<td>42,38 (1,65 - 83,10)</td>
</tr>
<tr>
<td></td>
<td>lê e/ou escreve</td>
<td>2,58 [-1,43 - 6,60]</td>
</tr>
<tr>
<td></td>
<td>nem lê, nem escreve</td>
<td>15,76 (8,82 - 22,70)</td>
</tr>
<tr>
<td>Existência de banheiro</td>
<td>mais de um (≥ 1 interno)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>um, interno</td>
<td>38,83 (29,10 - 48,56)</td>
</tr>
<tr>
<td></td>
<td>um, externo</td>
<td>15,18 (12,07 - 18,29)</td>
</tr>
<tr>
<td></td>
<td>não existe</td>
<td>4,19 (2,80 - 5,57)</td>
</tr>
<tr>
<td>Existência de cozinha</td>
<td>não x sim</td>
<td>17,36 (13,85 - 20,86)</td>
</tr>
<tr>
<td>Posse de geladeira</td>
<td>não x sim</td>
<td>26,19 (22,18 - 30,20)</td>
</tr>
<tr>
<td>Origem da água</td>
<td>rede pública</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>poço raso</td>
<td>2,56 (1,11 - 4,00)</td>
</tr>
<tr>
<td></td>
<td>caminhão pipa</td>
<td>0,20 [-0,19 - 0,59]</td>
</tr>
<tr>
<td>Falta de água do sistema público</td>
<td>nunca falta</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>frequência < mensal</td>
<td>4,73 (0,44 - 9,01)</td>
</tr>
<tr>
<td></td>
<td>> 1 vez por mês</td>
<td>-2,83 [-6,03 - 0,36]</td>
</tr>
<tr>
<td></td>
<td>> 1 vez por semana</td>
<td>2,75 (0,05 - 5,45)</td>
</tr>
<tr>
<td></td>
<td>> 1 vez por dia</td>
<td>4,93 (2,57 - 7,28)</td>
</tr>
<tr>
<td>VARIÁVEL</td>
<td>CATEGORIAS</td>
<td>RA (%) (IC a 95%)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Queixa sobre a água do sistema público</td>
<td>sim x não</td>
<td>0,14 [(-1,82) - 2,10]</td>
</tr>
<tr>
<td>Preparo da água para bebida</td>
<td>não x sim</td>
<td>3,94 (1,24 - 6,64)</td>
</tr>
<tr>
<td>Preparo de frutas e verduras</td>
<td>solução desinfetante</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>lavadas</td>
<td>76,44 (65,79 - 87,09)</td>
</tr>
<tr>
<td></td>
<td>não prepara</td>
<td>0,88 (0,08 - 1,68)</td>
</tr>
<tr>
<td>Existência de reservatório domiciliar</td>
<td>sim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>armazenamento em vasilhame</td>
<td>18,79 (15,23 - 22,35)</td>
</tr>
<tr>
<td></td>
<td>não armazena</td>
<td>5,56 (3,71 - 7,41)</td>
</tr>
<tr>
<td>Material do reservatório</td>
<td>não tampado x tampado</td>
<td>2,91 (0,09 - 5,73)</td>
</tr>
<tr>
<td>Lavagem das mãos antes da alimentação</td>
<td>quase sempre, água e sabão</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>quase sempre, apenas água</td>
<td>3,73 [(-3,63) - 11,09]</td>
</tr>
<tr>
<td></td>
<td>pequena frequência</td>
<td>3,81 (0,57 - 7,05)</td>
</tr>
<tr>
<td></td>
<td>nunca</td>
<td>8,28 (5,41 - 11,15)</td>
</tr>
<tr>
<td>Lavagem das mãos após defecar</td>
<td>quase sempre, água e sabão</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>quase sempre, apenas água</td>
<td>1,74 [(-5,53) - 9,00]</td>
</tr>
<tr>
<td></td>
<td>pequena frequência</td>
<td>5,78 (2,59 - 8,97)</td>
</tr>
<tr>
<td></td>
<td>nunca</td>
<td>11,60 (8,20 - 15,01)</td>
</tr>
<tr>
<td>Forma de disposição dos esgotos</td>
<td>rede pública</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>algum tipo de fossa</td>
<td>21,32 (14,84 - 27,80)</td>
</tr>
<tr>
<td></td>
<td>superfície da rua ou córrego</td>
<td>8,83 (6,22 - 11,45)</td>
</tr>
<tr>
<td></td>
<td>terreno</td>
<td>2,62 (1,40 - 3,84)</td>
</tr>
<tr>
<td>Esgoto escoando na rua</td>
<td>sim x não</td>
<td>33,79 (28,67 - 38,91)</td>
</tr>
<tr>
<td>Lançamento das fezes das fraldas</td>
<td>vaso ou fossa</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>lixo</td>
<td>0,17 [(-0,87) - 1,20]</td>
</tr>
<tr>
<td></td>
<td>terreno ou rua</td>
<td>3,69 (1,75 - 5,63)</td>
</tr>
<tr>
<td></td>
<td>tanque</td>
<td>12,90 (9,36 - 16,43)</td>
</tr>
<tr>
<td></td>
<td>córrego ou rede</td>
<td>2,08 (0,96 - 3,20)</td>
</tr>
<tr>
<td>Acondicionamento do lixo</td>
<td>saco de lixo</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>sacola de plástico</td>
<td>35,70 (29,87 - 41,54)</td>
</tr>
<tr>
<td></td>
<td>papel ou caixa de papelão</td>
<td>6,01 (4,18 - 7,84)</td>
</tr>
<tr>
<td></td>
<td>lata, bacia ou balde</td>
<td>5,35 (3,27 - 7,43)</td>
</tr>
<tr>
<td></td>
<td>não embala</td>
<td>-0,60 [(-2,15) - 0,95]</td>
</tr>
<tr>
<td>Disposição do lixo</td>
<td>na rua para coleta ou caçamba da rua</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>enterrado</td>
<td>0,45 [(-0,14) - 1,04]</td>
</tr>
<tr>
<td></td>
<td>queimado no quintal</td>
<td>1,87 [(-0,92) - 4,65]</td>
</tr>
<tr>
<td></td>
<td>lote vago, quintal, rua, erosão, "lixão"</td>
<td>11,22 (8,36 - 14,09)</td>
</tr>
<tr>
<td></td>
<td>córrego</td>
<td>2,49 (1,38 - 3,61)</td>
</tr>
</tbody>
</table>
TABELA 45 (continuação)

RISCO ATRIBUÍVEL - RESULTADOS

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CATEGORIES</th>
<th>RA (%) (IC a 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freqüência da coleta pública de lixo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>diária</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>dias úteis</td>
<td>2,22 ([1,07] - 5,52)</td>
</tr>
<tr>
<td></td>
<td>três vezes por semana</td>
<td>42,23 ([23,50] - 60,96)</td>
</tr>
<tr>
<td></td>
<td>duas vezes por semana</td>
<td>15,15 ([8,63] - 20,67)</td>
</tr>
<tr>
<td></td>
<td>semanal</td>
<td>6,91 ([4,59] - 9,23)</td>
</tr>
<tr>
<td></td>
<td>frequência menor</td>
<td>1,48 ([0,44] - 2,52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inundação do lote</td>
<td>nunca</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>< 5 vezes por ano</td>
<td>2,26 (0,42 - 4,09)</td>
</tr>
<tr>
<td></td>
<td>> 5 vezes por ano</td>
<td>20,94 (16,26 - 25,62)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empoçamento no lote</td>
<td>sim x não</td>
<td>9,16 (4,48 - 13,84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presença de moscas</td>
<td>nunca</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>menos de 1 mês por ano</td>
<td>-0,67 ([3,34] - +1,99)</td>
</tr>
<tr>
<td></td>
<td>1 mês por ano</td>
<td>-2,10 ([3,76] - 0,44)</td>
</tr>
<tr>
<td></td>
<td>3 meses por ano</td>
<td>-3,67 ([7,09] - 0,24)</td>
</tr>
<tr>
<td></td>
<td>6 meses por ano</td>
<td>-0,57 ([6,47] - +5,33)</td>
</tr>
<tr>
<td></td>
<td>todo o tempo</td>
<td>27,02 (19,31 - 34,73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presença de mosquitos</td>
<td>nunca</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>menos de 1 mês por ano</td>
<td>-1,45 ([3,40] - +0,50)</td>
</tr>
<tr>
<td></td>
<td>1 mês por ano</td>
<td>-0,05 ([0,88] - 0,77)</td>
</tr>
<tr>
<td></td>
<td>3 meses por ano</td>
<td>-4,47 ([8,57] - 0,37)</td>
</tr>
<tr>
<td></td>
<td>6 meses por ano</td>
<td>-6,64 ([18,16] - +4,88)</td>
</tr>
<tr>
<td></td>
<td>todo o tempo</td>
<td>4,70 ([19,60] - 28,99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presença de baratas</td>
<td>nunca</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>menos de 1 mês por ano</td>
<td>-2,54 ([5,67] - +0,59)</td>
</tr>
<tr>
<td></td>
<td>1 mês por ano</td>
<td>0,12 ([1,67] - 1,90)</td>
</tr>
<tr>
<td></td>
<td>3 meses por ano</td>
<td>3,96 (1,37 - 6,54)</td>
</tr>
<tr>
<td></td>
<td>6 meses por ano</td>
<td>0,80 ([2,47] - 4,07)</td>
</tr>
<tr>
<td></td>
<td>todo o tempo</td>
<td>19,84 (13,86 - 25,82)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presença de ratos</td>
<td>nunca</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>< 1 vez por ano</td>
<td>-0,41 ([2,56] - 1,74)</td>
</tr>
<tr>
<td></td>
<td>≥ 1 vez por ano</td>
<td>1,82 (0,00 - 3,63)</td>
</tr>
<tr>
<td></td>
<td>≥ 1 vez por semestre</td>
<td>0,00 ([1,75] - 1,76)</td>
</tr>
<tr>
<td></td>
<td>≥ 1 vez por mês</td>
<td>4,13 (1,83 - 6,43)</td>
</tr>
<tr>
<td></td>
<td>≥ 1 vez por semana</td>
<td>19,75 (15,70 - 23,80)</td>
</tr>
</tbody>
</table>
7.11- **ANEXO K**

TESTE DE CONFIABILIDADE - RESULTADOS
<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>MESMO ENTREVISTADOR</th>
<th></th>
<th>OUTRO ENTREVISTADOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caso</td>
<td>Controle</td>
<td>Caso</td>
<td>Controle</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>p</td>
<td>K</td>
<td>p</td>
</tr>
<tr>
<td>Residência da mãe</td>
<td>-0.03*</td>
<td>0.83</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Nasc da mãe</td>
<td>0.85</td>
<td>0.00</td>
<td>0.82</td>
<td>0.00</td>
</tr>
<tr>
<td>Residência do pai</td>
<td>0.59</td>
<td>0.00</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>Núm. de pessoas</td>
<td>0.71</td>
<td>0.00</td>
<td>0.58</td>
<td>0.00</td>
</tr>
<tr>
<td>Idade criança</td>
<td>0.88</td>
<td>0.00</td>
<td>0.94</td>
<td>0.00</td>
</tr>
<tr>
<td>Sexo</td>
<td>0.95</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Amamentação</td>
<td>0.47</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td>Local onde fica</td>
<td>0.00*</td>
<td>1.00</td>
<td>0.47</td>
<td>0.00</td>
</tr>
<tr>
<td>Pessoa que cuida</td>
<td>0.62</td>
<td>0.00</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>Instrução mãe</td>
<td>0.71</td>
<td>0.00</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>Instrução pai</td>
<td>0.58</td>
<td>0.00</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>Religião mãe</td>
<td>0.40</td>
<td>0.00</td>
<td>0.78</td>
<td>0.00</td>
</tr>
<tr>
<td>Religião pai</td>
<td>0.50</td>
<td>0.00</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Propriedade casa</td>
<td>0.70</td>
<td>0.00</td>
<td>0.65</td>
<td>0.00</td>
</tr>
<tr>
<td>Núm. cômodos</td>
<td>0.66</td>
<td>0.00</td>
<td>0.86</td>
<td>0.00</td>
</tr>
<tr>
<td>Exist. banheiro</td>
<td>0.69</td>
<td>0.00</td>
<td>0.74</td>
<td>0.00</td>
</tr>
<tr>
<td>Exist. cozinha</td>
<td>0.65</td>
<td>0.00</td>
<td>0.47</td>
<td>0.00</td>
</tr>
<tr>
<td>Posse de TV</td>
<td>0.76</td>
<td>0.00</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>Posse de geladeira</td>
<td>0.90</td>
<td>0.00</td>
<td>0.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Ocupação mãe</td>
<td>0.47</td>
<td>0.00</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>Ocupação pai</td>
<td>0.62</td>
<td>0.00</td>
<td>0.38</td>
<td>0.00</td>
</tr>
<tr>
<td>Renda familiar</td>
<td>0.46</td>
<td>0.00</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>Origem da água</td>
<td>1.00</td>
<td>0.00</td>
<td>0.66</td>
<td>0.00</td>
</tr>
<tr>
<td>Uso da água</td>
<td>0.00*</td>
<td>?</td>
<td>-0.01*</td>
<td>0.88</td>
</tr>
<tr>
<td>Intermittência</td>
<td>0.32</td>
<td>0.00</td>
<td>0.18</td>
<td>0.02</td>
</tr>
<tr>
<td>Queixa sobre água</td>
<td>0.35*</td>
<td>0.00</td>
<td>0.20*</td>
<td>0.10</td>
</tr>
<tr>
<td>Preparo da água</td>
<td>0.48</td>
<td>0.00</td>
<td>0.57</td>
<td>0.00</td>
</tr>
<tr>
<td>Preparo alimentos</td>
<td>0.25</td>
<td>0.02</td>
<td>-0.05*</td>
<td>0.63</td>
</tr>
<tr>
<td>Existência caixa</td>
<td>0.78</td>
<td>0.00</td>
<td>0.78</td>
<td>0.00</td>
</tr>
<tr>
<td>Material da caixa</td>
<td>0.79</td>
<td>0.00</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Limpeza da caixa</td>
<td>0.51</td>
<td>0.03</td>
<td>0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>Higiene alimentar</td>
<td>0.29</td>
<td>0.03</td>
<td>0.54</td>
<td>0.00</td>
</tr>
<tr>
<td>Higiene defecar</td>
<td>0.39</td>
<td>0.03</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>Disposição esgoto</td>
<td>0.86</td>
<td>0.03</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>Obstrução rede</td>
<td>0.83</td>
<td>0.00</td>
<td>0.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Existência cárrego</td>
<td>0.67</td>
<td>0.00</td>
<td>0.56</td>
<td>0.00</td>
</tr>
<tr>
<td>Contato com água</td>
<td>0.51</td>
<td>0.00</td>
<td>0.41</td>
<td>0.00</td>
</tr>
<tr>
<td>Esgoto na rua</td>
<td>0.59</td>
<td>0.00</td>
<td>0.29</td>
<td>0.05</td>
</tr>
<tr>
<td>Lançam. das fezes</td>
<td>0.28</td>
<td>0.01</td>
<td>0.47</td>
<td>0.00</td>
</tr>
<tr>
<td>Acondic. do lixo</td>
<td>0.41</td>
<td>0.00</td>
<td>0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>Disposição lixo</td>
<td>0.43</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Frequência coleta</td>
<td>0.33</td>
<td>0.00</td>
<td>0.54</td>
<td>0.00</td>
</tr>
</tbody>
</table>
TABELA 46 (continuação)
TESTE DE CONFIABILIDADE
COEFICIENTE "KAPPA" E p POR VARIÁVEL

VARIÁVEL	MESMO ENTREVISTADOR						OUTRO ENTREVISTADOR				
	Caso	Controle						Caso	Controle		
	K	p	K	p	K	p	K	p	K	p	
Inundação	0,27	0,04	0,32	0,01	0,36	0,00	0,27	0,02			
Empoçamento	0,28	0,06	0,38	0,01	0,25	0,07	-0,04	0,77			
Moscas	0,27	0,00	0,17	0,04	-0,05	0,48	0,01	0,63			
Mosquitos	0,01	0,94	0,20	0,05	0,11	0,20	0,16	0,04			
Baratas	0,16	0,03	0,21	0,01	0,23	0,00	0,25	0,00			
Ratos	0,29	0,09	0,36	0,00	0,21	0,02	0,39	0,00			

* valor desconsiderado, por haver concentração de resultados em apenas uma célula da diagonal.
8- SUMMARY

An epidemiological design was developed with the purpose of identifying associations between environmental sanitation scenarios and diarrhea morbidity in children under 5 years. The aim of the study was to apply the technique as a support to the priority setting of environmental sanitation interventions, through its testing in the urban area of the city of Betim-MG, Brazil. The case-cohort variant of the case-control method was adopted, with a sample of 997 cases, constituted of children who called in at local health services reporting diarrhea, and 999 controls, randomized within the population universe of the studied area. Based on household questionnaires, information about potential confounders and exposures to lack of environmental sanitation services and to inadequate hygiene practices was collected. The data were statistically analyzed, sequentially through univariate, bivariate and multivariate techniques, the latter being by logistic regression. Many analyzed exposures showed to be significantly associated with diarrhea. The priority setting of interventions was evaluated by the values of 3 different indicators: the magnitude of adjusted relative risk, the magnitude of attributable risk and the standardized coefficient of adjusted relative risk. The following ordering of exposures showed to be priorities, and are listed with the respective values of the above parameters: a) hygiene education, including a set of 5 different hygiene measures; b) adequate sewage disposal; c) implementation of household water-reservoirs; d) increase of urban-refuse collection; e) flooding control. The employed design was considered to be satisfactory, for the intended purpose, still allowing the visualization of a simplified protocol, more feasible for a potential adoption in planning actions in the environmental sanitation field.
9- REFERÊNCIAS BIBLIOGRÁFICAS

50- DANIEL, M., SIXL, W., KOCK, M. Problems of housing and health of people utilizing the garbage in Cairo from the viewpoint of medical entomology. Journal of Hygiene, Epidemiology, Microbiology and Immunology, v.33, n.4-suppl, p.568-576, 1989.

167- SECRETARIA MUNICIPAL DE SAÚDE - BETIM-MG. *Diagnóstico da saúde*. 1993 (Mimeogr.).

